

Electron Microprobe Essential Characteristics

- Dedicated wavelength-dispersive spectrometers (WDS)
- Optical microscope coaxial with electron column, autofocus
- Stabilization of e- gun shift and tilt, feedback circuit
- Energy-dispersive spectrometer (EDS)
- Stage: multisample, non-tilting, large xy range
- Automation of vacuum, electron optic, stage, spectrometer
- Software system for imaging, quantitative analysis
- Electron gun: W, LaB6/CeB6, field emission
- Backscattered and secondary e- detectors
- Cathodoluminescence detector / spectrometer

EPMA Overview

Advances in EPMA Improvements in vacuum systems, computer automation/operating systems, electronic stability Improved imaging resolution using field-emission gun and CeB6 sources Specialized WDS analyzing crystals and high intensity spectrometer configurations SDD revolution transitioning to microprobe systems Cathodoluminescence spectrometers and detectors Research on standards and correction algorithms More and improved software tools to aid the analyst X-ray mapping via stage and beam scanning

Microanalysis Software Free or Shareware

- Winxray Program to generate EDS spectra using Monte Carlo and Φ(ρz) algorithms. <u>http://montecarlomodeling.mcgill.ca</u>
- NIST Software Products DTSA-II (Desktop Spectrum Analyzer). http://www.cstl.nist.gov/div837/837.02/epg/dtsa2/
- Lispix Image processing program by Dave Bright at NIST, very powerful features for x-ray maps. http://www.cstl.nist.gov/div837/Division/outputs/software.htm
- Penelope Advanced Monte Carlo program <u>ftp://giga.sct.ub.es/serveis/msonda</u>

EPMA Overview

17

Electron-Specimen Interactions and X-ray Generation

Electron Range (Kanaya & Okayama)					
$R_{K-O}(\mu m) = 0.0276 (A/Z^{0.89} \rho) E_0^{1.67}$					
	Element	5 keV	10 keV	20 keV	30 keV
Electron Range increases w E_o , decreases with Z	С	450 nm	1.4 μm	4.5 μm	8.9 µm
	AI	413 nm	1.3 um	4.2 μm	8.2 μm
	Fe	159 nm	505 nm	1.6 µm	3.2 µm
	Ag	135 nm	431 nm	1.4 μm	2.7 μm
	Au	85 nm	270 nm	860 nm	1.7 μm
EPMA Overview 31					

LDE Diff	actin	g Cr	ysta	l Ele	eme	nt R	ang	es		
		2d (nm)	Be	В	С	N	0	F		
•	NSTE	約10		0	0	0	0			
	LDE1	約6			\triangle	\bigcirc	\bigcirc	\bigcirc		
	LDE2	約10		\bigcirc	0	\bigcirc	0			
	LDEB	約14.5	\bigcirc	0						
	LDE1H	約6			\triangle	0	0			
	LDE2H	約10		0	0					
	LDENH	約8			\bigcirc	0				
	LDE3H	約20	0	\bigcirc						
	LDE5H	約8			\bigcirc	0				
	LDEBH	約14.5	\bigcirc	\bigcirc						
EPMA Overview										7

WDS Det Ar ioniza The num Compare	tector: A ation energ ber of ionize with Si El	r Ionizatio y 27 eV zations is: n = OS 3.8 eV dete	Photon energy ection process,	y / 27 eV factor of 7
	Photon	Energy eV	Ar+ per photon	
	Be Kα	110	4	
	Mg Kα	1254	46	
	Fe Kα	6403	237	
	Ge Ka	9885	366	
	Zr Kα	15774	584	
These low is operated	signals are l in the proj	then amplifie portional mode	d by the counter, with $10^2 - 10^2$	er which 0 ⁵ amplification

1	o Oxide					
						FeO* or
Standard	MgO	Al2O3	SiO2	CaO	TiO2	Fe2O3
Alaska Anorthite		36.03	44.00	19.09		0.62
Boyd Olivine	51.63		40.85			7.17
men Mtns Ilmenite	0.31				45.70	46.54
411 Glass	14.67	0.10	54.30	15.47		14.42
412 Glass	19.33	9.27	45.35	15.25		9.96
Ayanite P236		62.91	37.09			
Natural Bridge Diopside	18.31	0.06	55.40	25.78	0.01	0.26
ORNL, RDS Fayalite			29.49			70.51
San Carlos Olivine	49.42		40.81			9.55
Shankland Forsterite	57.30		42.70			
Springwater Olivine	43.58		38.95			16.62
aylor Kyanite	0.00	62.70	37.00			0.16
aylor Olivine	50.78		41.15			7.62
aylor Sphene		1.36	30.83	28.82	37.80	0.66
Taylor Spinel	28.34	71.66				
Weill A	11.05	16.07	49.72	23.15		
Weill B	13.99	16.05	48.99	20.97		
Weill D	17.97	20.96	45.07	16.00		
Weill E*	6.00	8.99	79.97	5.04		
Weill Enstatite Glass	40.15	0.00	59.85			
Weill F	10.07	30.93	52.06	6.94		
Weill G	32.69	3.31	61.12	2.89		
Weill H	5.22	41.90	30.91	21.97		
Weill I	19.03	2.01	52.95	26.01		
Weill I	1.01	19.02	42.98	36.99		

Washington University Earth and Planetary Sciences JEOL JXA-8200

JEOL e2v Silicon Drift Detector 130 eV resolution 3 time constants T3 T2 T1 Stage and beam mapping Quantitative EDS analysis LLSQ

105

Average Kmeas / Kcalc for CMASTF Standards
WU8200 SDD Data @ 120, 60, 3 s acquisition T3

120s Data	Mg	AI	Si	Са	Ti	Fe
Average	1.0122	1.0064	1.0017	0.9926	1.0021	1.0108
1σ	0.0063	0.0122	0.0078	0.0066	0.0106	0.0140
Relative %	0.62	1.21	0.78	0.67	1.06	1.38
60s Data						
Average	1.0058	1.0022	0.9969	0.9895	0.9975	1.0083
1σ	0.0118	0.0162	0.0069	0.0066	0.0150	0.0113
Relative %	1.17	1.61	0.69	0.67	1.51	1.12
3s Data						
Average	1.0061	1.0135	1.0001	0.9933	0.9947	1.0123
1σ	0.0162	0.0263	0.0104	0.0213	0.0118	0.0211
Relative %	1.61	2.59	1.04	2.14	1.19	2.09

ΕP

Quantitative Analysis Part 1 Quantitative Analysis Peak Intensity Measurement Precision and Accuracy Matrix Effects -- ZAF Correction Case Studies

Quantitative Analysis Summary

- Quantitative analysis is the measurement of the amount or concentration of each element present. Results are presented in weight or atomic percent (or fraction).
- X-ray intensity is measured on both sample and standard, using exactly the same analysis conditions. Comparative technique.
- Corrections are made for the effects of atomic number, fluorescence, and absorption for all elements in both the sample and the standard.
- Errors are dependent on instrumental setup, x-ray intensities, degree of certaintly of standard composition, and correction algorithms used.

EPMA Overview

154

1, 11, 11, 11, 11, 10, 10, 10, 11, 10, 10		
ELEMENT ABSCOR FLUCOR ZEDCOR ZAFCOR STP-POW	BKS-COR F(x)u	Next are ZAF factors for anorthite sample
Ca ka 1.0337 1.0000 1.0562 1.0918 1.1115 Si ka 1.2992 .9984 1.0164 1.3184 1.0343	.9502 .9335 .9827 .7020	followed by analysis.
Al ka 1.2146 .9870 1.0441 1.2517 1.0546	.9901 .7365	This is running ZAF in reverse:
0 Ka 2.0721 .5555 2.7415 .5524	1.0242 .2495	Input C to calculate k
CLEMENT K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% Ca ka .00000 .13195 14.406 7.692	FORMULA KILOVOL 1.000 15.0	For analysis we measure k to calculate C
Si ka .00000 .15314 20.190 15.385	2.000 15.0	
AI ka .00000 .15495 19.396 15.385 O ka .00000 .16782 46.007 61.538	8.000 15.0	
TOTAL: 100.000 100.000	13.000	
ABSCOR = absorption correction, A FLUCOR = characteristic fluorescence of	correction. F	
ABSCOR = absorption correction, A FLUCOR = characteristic fluorescence of ZEDCOR = atomic number correction, Z ZAFCOR = total multiplicative ZAF fac STP-POW = stopping power portion of 3KS-COR = backscatter portion of Z =(x)u = f(chi) this material (emitted inter K-value = k-ratio relative to pure element	correction, F Z ctor Z ensity/generate the calculated b	d intensity) y this ZAF algorithm and mac

