Probe for EPMA v. 9.4.3

Advanced Topics

Extreme Edition

By Daniel T. Kremser, Ph.D. for Probe Software, Inc. © Copyright 1994-2013

Contents

ACKNOWLEDGEMENTS	1
DISCLAIMER	1
INTRODUCTION	1
ELEMENT SETUPS	3
SAMPLE SETUPS	15
FILE SETUPS	
WAVESCANS	41
QUICK WAVESCAN ACQUISITION CALIBRATED MULTI-ELEMENT WAVESCANS	41 45
POLYGON GRIDDING – USING SURFER OPTION	57
STAGE BIT MAPS AND PICTURE SNAP! FEATURE	82
MODAL ANALYSIS	
DEADTIME CALCULATIONS	
CALCULATION OPTIONS	126
LINEAR CALIBRATION - CURVE METHOD	142
TIME DEPENDENT INTENSITY (TDI) CORRECTIONS	154
ADVANCED INTERFERENCE CORRECTIONS	172
LIGHT ELEMENT ANALYSIS - EMPIRICAL APFS	
REFERENCES	

(This page intentionally left blank)

Acknowledgements

Many people have aided the author both directly and indirectly in the preparation of this Advanced Topics manual. First and foremost, John Donovan and Paul Carpenter, they have freely given their time, expertise, and even data files for incorporation into this manual. Their technical discussions as well as their friendship over the years have made this manual better.

Disclaimer

IN NO EVENT SHALL DAN KREMSER, ADVANCED MICROBEAM OR PROBE SOFTWARE BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF DAN KREMSER, ADVANCED MICROBEAM OR PROBE SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DAN KREMSER, ADVANCED MICROBEAM, AND PROBE SOFTWARE SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THIS DOCUMENTATION PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND DAN KREMSER, ADVANCED MICROBEAM, AND PROBE SOFTWARE HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Introduction

PROBE FOR EPMA is a very versatile and powerful 32-bit acquisition, automation and analysis package for WDS and EDS electron microprobe analysis running under Microsoft Windows operating system.

One of the strengths of PROBE FOR EPMA is the wide variety of options and features for many different tasks that are available to the probe operator. The aim of this manual then is to document some of the more advanced features usually skipped over in an introductory text. And as always, the path taken to cover a feature may not be the only avenue to approach the subject.

This manual was originally produced on the Washington University (Earth and Planetary Sciences) JEOL 733 Superprobe equipped with three wavelength dispersive spectrometers and modified using PROBE FOR EPMA in demo mode.

(This page intentionally left blank)

Element Setups

Individual element analytical configurations for a specific element, x-ray, spectrometer, and reflecting crystal may be saved to the SETUP.MDB database for use in creating new sample setups within a probe run, for use in future runs or for documentation and performance evaluation purposes. The example below will illustrate how to create element setups from within a typical eight-element olivine routine and store them in a new SETUP.MDB database.

Open a new PROBE FOR EPMA run in the usual manner. From the **Acquire!** window, create a new unknown sample from the **New Sample** dialog box, then click the **Elements/Cations** button. Next, enter the elements of interest into the **Analyzed and Specified Elements** window in the usual manner. Below is the completed **Analyzed and Specified Elements** window after the entry of all seven elements plus oxygen.

Selected Samples OK Cancel Un 1 * setup for olivines Save Element Setup Save Element Setup Save Sample Setup Add/Remove Standards Reload Standard Assignments Remove TDI Correction 1 2 3 4 5 6 Click Element X-Ray Analyzed Cations Oxygens Off-Peak 4 1 si ka Yes 1 2 Linear 4 1 si ka Yes 1 2 Linear 4 1 ti ka Yes 1 Linear 6 1 Linear 3 al ka Yes 1 Linear 6 1 Linear 5 mn ka Yes 1 Linear 6 1 Linear 6 mg ka Yes 1 Linear 7 ca No 1 Unear	Selected Sar Un 1 * setu	nples .p for olivine	95			ОК			Cance	əl
Un 1 * setup for olivines Save Element Setup Save Sample Setup Add/Remove Standards Reload Standard Assignments Remove TDI Correction 1 2 3 4 5 6 Click Element Row to Edit Element/Cations Parameters (click empty row to add) Channel Element X-Ray Analyzed Cations Oxygens Off-Peak 1 si ka Yes 1 2 Linear 3 al ka Yes 1 2 Linear 3 al ka Yes 1 2 Linear 4 fe ka Yes 1 1 Linear 5 mn ka Yes 1 1 Linear 6 mg ka Yes 1 1 Linear 7 ca ka Yes 1 1 Linear 8 o o Noo 1 0	Un 1 * setu	up for olivine	95							
Save Element Setup Save Element Setup Save Element Setup Save Element Setup Add/Remove Standards Reload Standard Assignments Remove TDI Correction 1 2 3 4 5 6 Click Element Kow to Edit Element/Cations Parameters (click empty row to add) Click Element X-Ray Analyzed Cations Oxygens Off-Peak 4 1 2 3 4 5 6 Channel Element X-Ray Analyzed Cations Oxygens Off-Peak 4 1 si ka Yes 1 2 Linear 4 1 Linear 4 1 Linear 4 1 Linear 4 1 Linear 6 mg ka Yes 1 1 Linear 6 mg ka Yes 1 1 Linear 6 1 Linear 6 No 1 0 1 1 Linear 6 <td></td>										
Save Sample Setup Add/Remove Standards Reload Standard Assignments Remove TDI Correction 1 2 3 4 5 6 Click Element Kow to Edit Element/Cations Parameters (click empty row to add) Click Element X-Ray Analyzed Cations Oxygens Off-Peak 4 1 5 ka Yes 1 2 Linear 4 5 6 2 ti ka Yes 1 2 Linear 4 6 3 al ka Yes 1 1 Linear 6 1 Linear 7 ca ka Yes 1 Linear 7 6 No 1 D Inear 1 Linear 6 0 No 1 D Inear 1 Linear 6 0 No 1 D						Sav	e Eler	nent S	etup	
Add/Remove Standards Reload Standard Assignments Remove TDI Correction 1 2 3 4 5 6 Click Element Row to Edit Element/Cations Parameters (click empty row to add) Channel Element X-Ray Analyzed Cations Oxygens Off-Peak 4 1 si ka Yes 1 2 Linear 4 6 2 ti ka Yes 1 2 Linear 4 6 3 al ka Yes 1 1 Linear 6 1 Linear 6 1 Linear 6 1 Linear 6 1 Linear 7 ca ka Yes 1 Linear 6 1 Linear 7 7					ĺ.	Sav	e Sarr	iple S	etup	
Reload Standard AssignmentsRemove TDI Correction123456Click Element Row to Edit Element/Cations Parameters (click empty row to add)ChannelElementX-RayAnalyzedCationsOxygensOff-Peak41sikaYes12Linear42tikaYes12Linear43alkaYes11Linear4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10II						Add/P	lemov	e Star	ndards	5
Remove TDI Correction123456Click Element/Cations Parameters (click empty row to add)ChannelElementX-RayAnalyzedCationsOxygensOff-Peak41sikaYes12Linear42tikaYes12Linear3alkaYes11Linear4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10II						Reload S	tanda	rd As:	signme	ents
Indext of the second state of the seco						Remo	ve TC)I Corr	rection	1
123456Click Element Row to Edit Element/Cations Parameters (click empty row to add)ChannelElementX-RayAnalyzedCationsOxygensOff-Peak41sikaYes12Linear42tikaYes12Linear43alkaYes23Linear44fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10III										
Click Element Row to Edit Element/Cations Parameters (click empty row to add)ChannelElementX-RayAnalyzedCationsOxygensOff-Peak1sikaYes12Linear2tikaYes12Linear3alkaYes23Linear4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10Image						1 2	3	4	5	6
2tikaYes12Linear3alkaYes23Linear4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10Inear	Channel 1	Element	X-Ray	Analyzed	Cations	Oxyger 2	ns	Uff-P	'eak ar	4
3alkaYes23Linear4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10Inear	2	ti	ka	Yes	1	2		Line	ar	
4fekaYes11Linear5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo10II	3	al	ka	Yes	2	3		Line	ar	
5mnkaYes11Linear6mgkaYes11Linear7cakaYes11Linear8oNo1OII	4	fe	ka	Yes	1	1		Line	ar	
60mgkaYes11Linear7cakaYes11Linear8oNo1OII	5	mn	ka	Yes	1	1		Linea	ar	
7 ca ka Yes 1 1 Linear 8 0 No 1 0 I	6	mg	ka	Yes	1	1		Linea	ar	
8 o No 1 O	7	ca	ka	Yes	1	1		Line	ar	
	8	0		No	1	0				
Image: set in the set in		1								

Go through the calibration process; find new peak positions and standardize to acquire intensity data on each standard. Normally one should save the element setup of an element that is assigned as the standard for that element. This is done because in that case the x-ray intensity data, P/B data, PHA parameters, and other information will also be saved in the SETUP.MDB database. This information is very useful for documentation and evaluation purposes.

After completing the calibration and standardization process, open the **Analyze!** window. Choose the element setup to be stored and highlight the standard (iron in fayalite, in this example).

Analyze!	
Sample List (multi-select) (double-click to see intensity data) © Standards St 203 Set 1 Fayalite © Unknowns St 204 Set 1 Forstrite St 205 Set 1 Teophroite St 205 Set 1 Forstrite	Analyze Data KRaws Combine Selected Samples >>Excel List Report Calculation Options
Wavescans St 207 Set 1 Kyanite C All Samples St 210 Set 1 Wollastonite Select All St 212 Set 1 Rutile	Pause Between Samples Report Use All Matrix Corrections Combine Data Lines Delete Selected Sample(s) Match
Save Setups	Combined Conditions Count Times Sort Stat and Data Grids In Geological
Specified Concentrations Standard Assignments Name/Descr Total Calcul	Conditions Elements/Cations or Atomic Number xygen Total Weight % Order tted Oxygen Z - Bar Order
Copy	
Delete Selected Line(s) Undelete Selected Line(s	Analyze Selected Line(s)
Copy Copy Copy Copy Copy Copy Copy Copy	
١	

Click the **Elements/Cations** button.

This opens the Analyzed and Specified Elements window.

nalyzed and Specified Elements		
Selected Samples	ОК	Cancel
St 203 Set 1 Fayalite		
	Save El	ement Setup
	Save Sa	ample Setup
	Add/Rem	ove Standards
	Reload Stand	lard Assignments
	Remove	TDI Correction
	1 2 3	4 5 6

Channel	Element	X-Ray	Analyzed	Cations	Oxygens	Off-Peak	
1	fe	ka	Yes	1	1	Linear	
2	si		No	1	2		
3	ti		No	1	2		
4	al		No	2	3		
5	mn		No	1	1		
6	mg		No	1	1		
7	ca		No	1	1		
8	o		No	1	0		

Click the **Save Element Setup** button.

The Element Setup Database opens.

Element Setup Database	
Current Sample:	Element Setup Data From SETUP.MDB Database
St 203 Set 1 Fayalite	I ↓ ▶ ▶ ▶ ▶ ■
fe ka Spectro 3 LIF (134.626) si (specified)	Enter Search Element >> Total Records = 0
ti (specified) al (specified)	Elem/Order/CatOxd
mn (specified) mg (specified)	Spec/Crystal/2d
o (specified)	User Name
	Sample Name
	Date - Time
	Probe Data File
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos
<< Add to Sample	BgdType/Offset
Delete from Sample	S-Hi/Lo/Exponen
Delete All Elements From Sample	KeV/TO/DT/DIFF
	Standard Intensity Data
	Std/PeakToBgd
Load Standard Intensity From	On/Hi/Lo sec
	On/Hi/Lo cps
Close	Beam/Abs current
	Stage Position
• SETUP.MDB O SETUP2.M	DB (MAN) C SETUP3.MDB (Interf.) Import Export
-Wavescan and Peaking Parame	eters
Wavescan Hi/Lo/Points/Time	
Peakscan Hi/Lo/Points/Time	
Start/Stop/PB/Count/Attempts	

Highlight the specific element to save and click the **Add To Database**>> button. In this standard, the iron intensity is the only element to be archived, select *fe ka Spectro 3 LIF* (134.626).

Record number 1 has been stored as illustrated below. Note that the *Standard Intensity Data* and *Wavescan and Peaking Parameters* are stored as well.

Element Setup Database						
Current Sample:	Element Setup Data	From SETUP.MDB Database				
St 203 Set 1 Fayalite	I d Data Cursor	Delete from Database				
fe ka Spectro 3 LIF (134.626)	Enter Search Element >>	Total Records = 1				
si (specified) ti (specified)	Flem/Order/CatOvd					
al (specified) mn (specified)	Spac/Crystal/2d					
mg (specified)	opectorystatza	J3 JLIF J4.0207 J0.000030				
o (specified)	User Name	Dan Kremser				
	Sample Name	Fayalite				
	Date - Time	10/15/2005 11:35:22 AM				
Double click Analyzed Element List	Probe Data File	C:\Documents and Settings\Dan\Desktop\July				
to see Element Setups	On/Hi/Lo Pos	134.626 137.471 131.78				
<< Add to Sample	BgdType/Offset	OFF LIN 2.845 -2.846				
Delete from Sample	S-Hi/Lo/Exponen	1 1				
Delete All Elements From	Base/Win/Gain/Bias	1 10 200 1700				
Sample	KeV/TO/DT/DIFF	15 40 2.66E-06 0				
		Standard Intensity Data				
Add To Database >>	Std/PeakToBgd	203 213.5893				
Load Standard Intensity From	On/Hi/Lo sec	10 5 5				
	On/Hi/Lo cps	2392.2 11.6 10.8				
Close	Beam/Abs current	31.061 0				
	Stage Position	6.394809 27.67546 11.0132 1				
SETUP.MDB O SETUP2.MDB (MAN) O SETUP3.MDB (Interf.) Import Export						
-Wavescan and Peaking Parame	eters					
Wavescan Hi/Lo/Points/Time	138.9923	130.4557 100 4				
Peakscan Hi/Lo/Points/Time	137.9252	131.5228 40 4				
Start/Stop/PB/Count/Attempts	8.173325E-02	5.448884E-03 3 10 30				

Click the **Close** button. The **Analyzed and Specified Elements** window reappears. Click the **OK** button. The **Analyze!** window returns.

The other element setups from this calibrated and standardized run or other probe runs may be entered into the database in a similar manner for future use.

The **Save Setups** button in the **Analyze!** window will allow the user to save all element setups in the selected sample (highlighted in the *Sample List*) to the element database (SETUP.MDB).

To recall an element setup from the SETUP.MDB database for a new sample setup follow the procedure outlined below. Open a new PROBE FOR EPMA run. This process will also be applicable if the user simply wants to add an element to an existing sample setup. This example will illustrate recalling elements from the database for the setup of a new pyroxene run.

📕 Acquire!				_	
1 2 228.075 90.9085 19	3 X 1.210 24.9663 28.06	¥ Z W	7)	Progress/Beam Deflect	ion
1-PET 2-TAP	3-LIF Fa	raday		_	
.00 .00	.00	.00		-	
				- ●	
Current Sample:					
	24.9663 28.061	2			
Start Wavescan DX 0					
Ne w Sample	PHA	Move	Stage	Magnification 400	0
Elements/Cations	Peak/Scan Options	Acquisition Option	Is Imaging	Kilovolts	Spor
Analytical Conditions	Count Times	Special Options	Peaking Options	Beam Current 40	
Combined Conditions	Locate	Rate Meter	Start Peaking	Acquire String	J

From the Acquire! window, click the New Sample button.

This opens the New Sample window. Edit the New Sample Name text field.

Click the Load Element Setups button in the New Sample window.

This opens the **Element Setup Database**.

Element Setup Database		
Current Sample:	Element Setup Data	From SETUP.MDB Database
Un 1 setup for pyroxene	I ◀ Data Cursor	▶ ▶ Delete from Database
	Enter Search	Total Records = 21
	Elem/Order/CatOxd	fe ka 1 1
	Spec/Crystal/2d	3 LIF 4.0267 0.000058
	User Name	Dan Kremser
	Sample Name	Fayalite
	Date - Time	3/16/1999 2:55:43 PM
	Probe Data File	E:\Probe Operators\Manual Files\olivine.mdb
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	134.5533 137.3983 131.7073
<< Add to Sample	BgdType/Offset	OFF LIN 2.845 -2.846
	S-Hi/Lo/Exponen	0 1
Delete from Sample	Base/Win/Gain/Bias	1 10 200 1700
Sample	KeV/TO/DT/DIFF	15 40 0.000001 0
1		Standard Intensity Data
Add To Database >>	Std/PeakToBgd	203 172.0335
Load Standard Intensity From	On/Hi/Lo sec	20 4 4
Database To Current Run	On/Hi/Lo cps	3340.317 19.5 19.33333
Class	Beam/Abs current	3051.167 0
Ciuse	Stage Position	7.343216 28.27236 10.95967 1
• SETUP.MDB • SETUP2.M	DB (MAN) O SETU	IP3 MDB (Interf.) Import Export
-Wavescan and Peaking Parame	eters	
Wavescan Hi/Lo/Points/Time	138.8216	130.285 100 6
Peakscan Hi/Lo/Points/Time	137.7545	131.3521 40 8
Start/Stop/PB/Count/Attempts	0.1089777	5.448884E-03 3 10 30

Scroll through the list of elements (records) and find the desired element and setup using the data cursor. Use the left, right arrows (top, center) to move through the database. To see all the setups for a particular element, enter the element symbol into the *Search Element* text field and use the arrow keys as before. To see all element setups again, simply clear the *Search Element* text field. To view the most recent addition(s) to the SETUP database, click the D button on the data cursor.

Here, the user browses through the records and selects the appropriate silicon (si) entry as the first element setup to load. The output list order of elements will follow this list.

Element Setup Database							
Current Sample:	-Element Setup Data I	From SETUP.MDB Database					
Un 1 setup for pyroxene	I ◀ Data Cursor	▶ ▶ Delete from Database					
	Enter Search	Total Records = 21					
	Elem/Order/CatOxd	si ka 1 2					
	Spec/Crystal/2d	1 PET 8.75 0.000144					
	User Name	Dan Kremser					
	Sample Name	Orthopyroxene					
	Date - Time	3/16/1999 4:50:31 PM					
	Probe Data File	E:\Probe Operators\Manual					
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	228.2325 231.0645 225.3995					
<< Add to Sample	BgdType/Offset	OFF LIN 2.8320000000 -2.833					
Delete from Domela	S-Hi/Lo/Exponen	0 1					
Delete All Elemente From	Base/Win/Gain/Bias	0.5 10 50 1700					
Sample	KeV/TO/DT/DIFF	15 40 0.000001 0					
		Standard Intensity Data					
Add To Database >>	Std/PeakToBgd	206 394.676					
Load Standard Intensity From	On/Hi/Lo sec	20 4 4					
Database To Current Run	On/Hi/Lo cps	3288.967 6.083333 10.58333					
Class	Beam/Abs current	3053.2					
	Stage Position	23.88083 19.99947 10.99982 1					
• SETUP.MDB O SETUP2.M	SETUP.MDB						
Wavescan and Peaking Parame	ters						
Wavescan Hi/Lo/Points/Time	232.4814	223.9836 100 6					
Peakscan Hi/Lo/Points/Time	231.4192	225.0458 40 8					
Start/Stop/PB/Count/Attempts	0.1084835	5.424177E-03 3 10 30					

Click the **<< Add to Sample** button to add the element setup to the current sample.

The Element Properties window for silicon appears.

Element Properties				
Enter Element Propert	ies For: si ka-			OK
Element X-I	Ray Line E	Bragg Order C	ations / Oxygens	
si 💌 ka	▼ 1	▼ 1	▼ 2 ▼	Cancel
Leave the X-ray L	ine Blank to	Indicate an	Charge	Delete
Difference	or Stoichiom	netry)	.000	Disable Acq
-Parameters (note that	Background Ty	vne can differ for St	tandards and Linknr	Disable Quant
-Background Type	Off-F	Peak Entry		
 Off Peak 	0.4	hsolute Position	Hi Off-Peak	Interferences
O MAN	• R	elative Offset	Check All Inte	rfering Elements
				_
Chastromator	Crustel	On Dook	High Off Dook	Law Off Baak
1 PE	T V	228.232	2.71600	-2.9490
Baseline	Window	Gain	Biac	Deadtime (us)
.50 10.	00	50.00	1700.	1.00
Calculate Empiri	cal PHA	Slit Size	, Slit Position	Detector Mode
🗌 Use Differential P	HA Mode		_	
Integrated Intens	ity Scan	Initial Step Size	Minimum Step Size	Specified APF
Use Integrated Int	ensities with Stone	.141625	.028325	1.00000
	тыту атерь			
Off Peak Correction Ty	/pe			
Linear	O Averag	e O H	ligh Only	C Low Only
C Exponential	00	Pos	sition1 Position	2 Position3
O Slope (Hi) 1.00	0 O P	olynomial	.000000	000000
C Slope (Lo) 1.00	00	50.716 .0000	00 .000000	.0000000
		1		
-	auiro High	Iterate High	Acquire Low	Iterate Low
C Multi-Point Ad	June riign			
C Multi-Point Ac	4	2	4	2
C Multi-Point Ad Fit Type	4 High Multi-I	2 Point Positions	Low Multi-P	2 coint Positions

Edit if required, then click the **OK** button to accept these values.

Element Setup Database							
Current Sample:	-Element Setup Data	From SETUP.MDB Database					
Un 1 setup for pyroxene analyses	I d Data Cursor	Delete from Database					
si ka Spectro 1 PET (228.232)	Enter Search Element >>	Total Records = 21					
	Elem/Order/CatOxd	fe ka 1 1					
	Spec/Crystal/2d	3 LIF 4.0267 0.000058					
	User Name	Dan Kremser					
	Sample Name	Fayalite					
	Date - Time	3/16/1999 2:55:43 PM					
	Probe Data File	E:\Probe Operators\Manual Files\olivine.mdb					
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	134.5533 137.3983 131.7073					
<< Add to Sample	BgdType/Offset	OFF LIN 2.845 -2.846					
	S-Hi/Lo/Exponen	0 1					
Delete from Sample	Base/Win/Gain/Bias	1 10 200 1700					
Sample	KeV/TO/DT/DIFF	15 40 0.000001 0					
		Standard Intensity Data					
Add To Database >>	Std/PeakToBgd	203 172.0335					
Load Standard Intensity From	On/Hi/Lo sec	20 4 4					
Database To Current Run	On/Hi/Lo cps	3340.317 19.5 19.33333					
Close	Beam/Abs current	3051.167 0					
	Stage Position	7.343216 28.27236 10.95967 1					
© SETUP.MDB ○ SETUP2.MI	SETUP.MDB						
-Wavescan and Peaking Parame	iters						
Wavescan Hi/Lo/Points/Time	138.8216	130.285 100 6					
Peakscan Hi/Lo/Points/Time	137.7545	131.3521 40 8					
Start/Stop/PB/Count/Attempts	0.1089777	5.448884E-03 3 10 30					

The silicon record is then listed in the text field under the previously defined sample name.

Continue browsing the element setup database and add all required element setups desired to the sample.

A typical pyroxene element setup list is shown below.

Element Setup Database						
Current Sample:	-Element Setup Data	From SETUP.MDB Database				
Un 1 setup for pyroxene	I 🖌 🖌 Data Cursor	▶ ▶ Delete from Database				
si ka Spectro 1 PET (228.232)	Enter Search	Total Records = 21				
ti ka Spectro 3 LIF (191.120) al ka Spectro 2 TAP (90.2020)						
cr ka Spectro 3 LIF (159.135)	Elem/Order/CatOxd	k ka 2 1				
mn ka Spectro 3 LIF (134.553)	Spec/Crystal/2d	1 PET 8.75 0.000144				
mg ka Spectro 2 TAP (107.302) ca ka Spectro 1 PET (107.507)	User Name	Dan Kremser				
na ka Spectro 2 TAP (129.529) k ka Spectro 1 PET (119.747)	Sample Name	Microcline				
	Date - Time	3/16/1999 4:43:13 PM				
	Probe Data File	E:\Probe Operators\Manual				
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	119.7471 123.6551 115.8381				
<< Add to Sample	BgdType/Offset	OFF LIN 3.908 -3.9090000000				
	S-Hi/Lo/Exponen	0 1				
Delete from Sample	Base/Win/Gain/Bias	0.5 10 50 1700				
Sample	KeV/TO/DT/DIFF	15 40 0.000001 0				
		Standard Intensity Data				
Add To Database >>	Std/PeakToBgd	116 147.9095				
Load Standard Intensity From	On/Hi/Lo sec	20 4 4				
Database To Current Run	On/Hi/Lo cps	2859.583 16.16667 22.5				
Class	Beam/Abs current	3045.2 0				
Ciuse	Stage Position	4.122887 19.90012 11.12511 1				
SETUP MDB O SETUP2 M	DB (MAN) O SETU	P3 MDB (Interf.) Import Export				
Wavescan and Peaking Parame	eters					
Wavescan Hi/Lo/Points/Time	125.6102	113.8839 100 6				
Peakscan Hi/Lo/Points/Time	124.1444	115.3497 40 8				
Start/Stop/PB/Count/Attempts	0.1496983	7.484914E-03 3 10 30				

Click the **Close** button when finished. The **New Sample** window reappears.

Click the **OK** button, returning to the **Acquire!** window. Don't forget to add oxygen as a specified element to the list for stoichiometry and other calculations. Note specified elements cannot be saved to the SETUP.MDB database.

Sample Setups

Normally, PROBE FOR EPMA uses the sample setup from the last unknown (or standard if there are no unknown samples) to create the next new sample setup. Sample setups on the other hand are designed to allow the user to easily recall a previous sample setup within a current run. This allows the user to create and re-use multiple setups comprised of different groups of elements **within** a single run. In the example below, sample setups for pyroxene and olivine will be created, each with a different set of elements and conditions, that may be recalled at anytime during the current probe run.

The saving of a sample setup actually saves only a pointer to the sample selected. All of this sample's acquisition and calculation options, elements/cations, standard assignments, etc will be utilized when a new sample is created based on this sample setup. However, because counting time and the associated unknown count factor is treated by PROBE FOR EPMA as data as opposed to setup information, it is necessary (if the user wants this information to be carried over) to acquire at least one data point with the sample setup prior to saving it as a sample setup.

A new PROBE FOR EPMA run is opened in the usual manner. Ten elements and appropriate standards for pyroxenes are loaded from the SETUP.MDB database and the STANDARD.MDB database, respectively. Each element is then calibrated and standardized. Count times, acquisition and calculation options are adjusted to optimize the analyses and output requirements. And finally, a pyroxene standard is run once to update count time information.

To save the just calibrated pyroxene sample as a sample setup, start by clicking the **Add To Setup** button from the **Analyze!** window.

Analyze!										
-Sample Li	ist (multi-selec	ct) (double-c	lick to see int	ensity data) —		Analyze	Data	KRaws	Combine Analysi	s
🔷 🔿 Standa	urdis St 81	Set 2 Albit	te		 Comb 	Combine Selected Samples >>Excel		>>Excel	Lines From Select	ed
🗌 🔿 Unknow	wns St11	6 Set 1 Mic	rocline		List	Report (alculation	Options	Samples	
O Waves	cans St 20	Sot 1 Orth				•		<u> </u>		
All Sar	All Samples St 207 Set 1 Kyanite St 210 Set 1 Wollastonite				Pa	use Between e All Matrix Co	Samples prrections	Report	Combine Data Line	es
Select	All St 21	2 Set 1 Ruti	ile	-					From Selected	
Add To S	Setup St 22	0 Set 1 Rho 4 Set 1 Cr2	odonite 03		Dele Undel	te Selected Sa ete Selected S	ample(s) Sample(s)	Match	Samples	
Save Se	tups Un a	2 Pyroxene	Sample Setu)	Comb	ined Conditio	ns Cou	nt Times	Sort Stat and Dat	 a
Specified	Concentration	s <mark>Standa</mark>	rd Assignmei	nts Name/De	scription	Conditions	Elements	s/Cations	Grids In Geologica or Atomic Numbe	al r
Lin 2 Pyro	vene #164 ch	eck		43.837 Tot	tal Oxvaen	99 445	Total We	eiaht %	Urder	
$TO = 40, K_{0}$	eV = 15, Bear	n = 30, Size	= 10	43.837 Cal	culated Oxyc	ien 12363	Z - Bar			
(MaqAnal =	2000.), Mode	= Analog S	pot		cess Oxvaen	21 726	Atomic V	Veiaht		
Results in C)xide Weight F	Percent		1.000		1		· · · · J · · ·		
Copy	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	K2O
Average:	49.723	.560	7.714	.914	4.641	.118	17.630	17.293	.846	.006
Std Dev:	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
ZAF Corr:	1.2835	1.1938	1.4370	1.1798	1.1910	1.2113	1.4///	1.0865	1.9293	1.0956
Sta Err:	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
%Rei SD:	.00	.00	.00	.00	.00	.00	.00	.00	.UU	.00
Manimum.	43.723	.300	7.714	.514	4.641	.110	17.030	17.233	.040	300.
	13.723	.300	7.714	.317	1.011	.110	17.050	17.233	.010	.000
		~ I			0			~ I		
Delet	te Selected Li	ne(s)	Undele	ete Selected Lin	ie(s)	Analyze S	Selected Li	ne(s)		
Сору	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	K2O 🔺
10 G	49.723	.560	7.714	.914	4.641	.118	17.630	17.293	.846	.006
										-
									Cancel No	ext //.

To review the saved sample setup, click the **Elements/Cations** button.

The Analyzed and Specified Elements dialog box appears.

Analyzed and Specified Elements								
Selected Samples	ОК	Cance	1					
Un 2 Pyroxene Sample Setup	Save Eler	ment Setup						
	Save Sar	nple Setup						
	Add/Remov	ve Standards						
	Reload Stands	urd Assignme	nts					
	Remove TI	OI Correction						
	1 2 3	4 5	6					

Channel	Element	X-Ray	Analyzed	Cations	Oxygens	Off-Peak
1	si	ka	Yes	1	2	Linear
2	ti	ka	Yes	1	2	Linear
3	al	ka	Yes	2	3	Linear
4	cr	ka	Yes	2	3	Linear
5	fe	ka	Yes	1	1	Linear
6	mn	ka	Yes	1	1	Linear
7	mg	ka	Yes	1	1	Linear
8	ca	ka	Yes	1	1	Linear
9	na	ka	Yes	2	1	Linear
10	k	ka	Yes	2	1	Linear
11	o		No	1	0	

Click the Save Sample Setup button.

The **Sample Setup Selection** window opens.

Sample Setup Selection	
Available Sample Setups	Sample Setup Description
	Pyroxene Sample Setup
	Add To Sample Setups
	Un 2 Pyroxene Sample Setup TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 0, MagImag = 40) Image Shift (X,Y): -2, 3
	si ka Spectro 1 PET (228,132)
	ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182)
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	cr ka Spectro 3 LIF (159.211) fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) na ka Spectro 2 TAP (129.282)
Delete Selection(s) From Sample Setups	
Clear Sample Setup Selection(s)	OK Cancel

Edit the Sample Setup Description text box as desired.

Click the << Add To Sample Setups button.

The **Sample Setup Selection** window appears as below. Note: the first number (12) represents the sample's row number and can be seen listed using the **Run** | **List Sample Rows, Names, Conditions** menu.

Sample Setup Selection	
Sample Setup Selection Available Sample Setups 12 Pyroxene Sample Setup	Sample Setup Description Pyroxene Sample Setup Contemporation of the setup of the se
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182) cr ka Spectro 3 LIF (159.211) fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) na ka Spectro 2 TAP (129.282) ▼
Clear Sample Setup Selection(s)	OK Cancel

Click the **OK** button, returning to the **Analyzed and Specified Elements** window.

Click the **OK** button of the **Analyzed and Specified Elements** window returning to the **Analyze!** window.

📕 Acquire!						
1 2 228.132 89.5183 1	3 X 91.113 24.9663 28	¥ .0612 10.9	z w 957 1.00000		Progress/Bea	am Deflection
1-PET 2-TAP	3-LIF	Faraday				
90. 77.	<u>4.00</u> 176.	2999.95				
Current Sample: Un 2	Pyroxene Sample Se	tup	Start Standard	or Unknown Acquisition	24.9663	28.0612
Data Rows: 1 Good Data Rows: 1			Sta	rt Wavescan	um .000000 px 0	.000000 0
New Sample	РНА		Move	Stage	Magnification	400
Elements/Cations	Peak/Scan Option	ns Acqu	uisition Options	Imaging	Kilovolts	Analog Spot
Analytical Conditions	Count Times	Sp	ecial Options	Peaking Options	Beam Current Beam Size	30
Combined Conditions	Locate		Rate Meter	Start Peaking	Acquire String	10

Return to the Acquire! window to create a new sample.

Click the **New Sample** button.

Edit the New Sample Name text field. Here, the user will establish an olivine sample setup.

Several paths may be taken from here to load new elements for the olivine sample. To enter an entirely new list of elements and parameters it might be easier to click the **OK** button and follow the **Element/Cations** button of the **Acquire!** window to the **Element Properties** dialog.

If (as in this example) only minor changes to a sample are required then from the **New Sample** window, click the **Load Element Setups** button.

The Element Setup Database opens.

Element Setup Database								
Current Sample:	-Element Setup Data	From SETUP.MDB Database						
Un 2 Pyroxene Sample	I II III IIII IIIIIIIIIIIIIIIIIIIIIII	▶ ▶ Delete from Database						
Setun	Enter Search							
ti ka Spectro 3 LIF (191.114)	Element >>	I otal Records = 21						
al ka Špectro 2 TAP (89.5182) cr ka Spectro 3 LIE (159.211)	Elem/Order/CatOxd	fe ka 1 1						
fe ka Spectro 3 LIF (133.211)	Spec/Crystal/2d	3 LIF 4.0267 0.000058						
mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846)								
ca ka Spectro 1 PET (107.534)	User Name	Dan Kremser						
k ka Spectro 1 PET (119.786)	Sample Name	Fayalite						
o (specified)	Date - Time	3/16/1999 2:55:43 PM						
	Probe Data File	E:\Probe Operators\Manual Files\olivine.mdb						
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	134.5533 137.3983 131.7073						
<< Add to Sample	BgdType/Offset	OFF LIN 2.845 -2.846						
	S-Hi/Lo/Exponen	0 1						
Delete from Sample	Base/Win/Gain/Bias	1 10 200 1700						
Delete All Elements From Sample	KeV/TO/DT/DIFF	15 40 0.000001 0						
Add To Database >>	Std/PeakToBad	203 172 0335						
Load Standard Intensity From Database To Current Run								
	Un/Hi/Lo cps	3340.317 19.5 19.33333						
Close	Beam/Abs current	3051.167 0						
	Stage Position	7.343216 28.27236 10.95967 1						
SETUP.MDB								
-Wavescan and Peaking Parame	Wavescan and Peaking Parameters							
Wavescan Hi/Lo/Points/Time	138.8216	130.285 100 6						
Peakscan Hi/Lo/Points/Time	137.7545	131.3521 40 8						
Start/Stop/PB/Count/Attempts	0.1089777	5.448884E-03 3 10 30						

Edit the previous pyroxene list, in this example chromium, sodium, potassium are eliminated from the list by highlighting each element and clicking the **Delete from Sample** button. If additional elements are required, recall them at this time (nickel is added in this example).

After editing, the window appears as below.

Element Setup Database						
Current Sample:	-Element Setup Data	From SETUP.MDB Database				
Un 2 Pyroxene Sample Setun	📕 🖣 Data Cursor	Delete from Database				
si ka Spectro 1 PET (228.132)	Enter Search	Total Records = 21				
ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89 5182)						
fe ka Spectro 3 LIF (134.634)	Elem/Order/CatOxd	ni ka 1 1				
mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846)	Spec/Crystal/2d	3 LIF 4.0267 0.000058				
ca ka Spectro 1 PET (107.534) ni ka Spectro 3 LIF (115.190)	User Name	Dan Kremser				
o (specified)	Sample Name	Ni-Olivine				
	Date - Time	3/16/1999 3:36:47 PM				
	Probe Data File	E:\Probe Operators\Manual Files\olivine.mdb				
Double click Analyzed Element List to see Element Setups	On/Hi/Lo Pos	115.1904 118.2654 112.1164				
<< Add to Sample	BgdType/Offset	OFF LIN 3.075 -3.074				
	S-Hi/Lo/Exponen	0 1				
Delete from Sample	Base/Win/Gain/Bias	1 10 200 1700				
Delete All Elements From Sample	KeV/TO/DT/DIFF	15 40 0.000001 0				
		Standard Intencity Data				
Add To Database >>	Std/PeakToBgd	222 126.0353				
Load Standard Intensity From	On/Hi/Lo sec	10 2 2				
Database To Current Run	On/Hi/Lo cps	3213.9 27 24				
	Beam/Abs current	3056.467 0				
Ciuse	Stage Position	3.937658 27.15654 10.95304 1				
SETUP MDB O SETUP2 MI	DB (MAN) O SETU	IP3 MDB (Interf.) Import Export				
Wavescan and Peaking Parame	eters					
Wavescan Hi/Lo/Points/Time	119.8027	110.5782 100 6				
Peakscan Hi/Lo/Points/Time	118.6496	111.7313 40 8				
Start/Stop/PB/Count/Attempts	0.1177592	5.887959E-03 3 10 30				
	,					

Click the **Close** button of the **Element Setup Database**, returning to the **New Sample** window.

📕 Acquire!				
1 2 228.132 89.5183 19	3 x 1.113 24.9663 28.061	Y Z W		Progress/Beam Deflection
1-PET 2-TAP	3-LIF Fa	raday		
4.00 4.00 90. 77.	4.00 176. 29	1.00 99.95		Ð
Current Sample: Un 3 * setup for olivine analyses Normal Acquisition Unknown Acquisition				24.9663 28.0612
Data Rows: 0	Good Data Rows: 0	Star	t Wavescan	um .000000 .000000 px 0 0
Ne w Sample	PHA	Move	Stage	Magnification 400
Elements/Cations	Peak/Scan Options	Acquisition Options	Imaging	Kilovolts 15
Analytical Conditions	Count Times	Special Options	Peaking Options	Beam Current 30 Beam Size 10
Combined Conditions	Locate	Rate Meter	Start Peaking	Acquire String

Click the **OK** button in the **New Sample** window, returning to the **Acquire!** window.

If different standard choices are required they should be added from the STANDARD.MDB database at this point. Use the **Standard** | **Add/Remove Standards To/From Run** menu in the main PROBE FOR EPMA log window.

Recalibrate and standardize all new elements and adjust count times, acquisition, and calculation options to optimize for olivine analysis. Run an olivine standard to obtain data and check the calibration.

Analyze!										_ 🗆 🗙
Sample Li Standa Unknov	Sample List (multi-select) (double-click to see intensity data) C Standards Un 1 * setup for pyroxene analyses Unknowns Un 2 Pyroxene Sample Setup Wavescans Un 3 * setup for olivine analyses					Analyze Data KRaws Combine Selected Samples >>Excel List Report Calculation Options			Combine Analys Lines From Selec Samples	ted
Wavescans All Samples Select All					Pa Us Delet	Pause Between Samples Report Use All Matrix Corrections Combine Data L Delete Selected Sample(s) Match				nes
Add To Setup Save Setups Specified Concentrations Standard Assignments Name/Desc					Comb	ete Selected S ined Condition Conditions	sample(s) ns Count Elements/1	Times Cations	Sort Stat and Da Grids In Geologic or Atomic Numb	ta cal er
Un 4 Olivine #117 check 43.484 Total 0 TO = 40, KeV = 15, Beam = 30, Size = 10 43.484 Calcul (MaqAnal = 2000.), Mode = Analog Spot .000 Excess Results in Oxide Weight Percent .000 Excess				tal Oxygen Iculated Oxyg cess Oxygen	en 100.087 11.747 21.035	Total Weig Z - Bar Atomic We	ight %			
Copy	SiO2	1102	AI203	FeO	MnO	MgO	CaO	NIO	0	l otal
Average:	40.686	.011	.017	9.584	.097	49.227	.088	.379	.000	100.087
Std Dev:	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
ZAF Corr:	1.3962	1.1682	1.6831	1.1851	1.2042	1.4293	1.0939	1.1850	000	000
Std Err:	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
%Rel SD:	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
Minimum:	40.686	.011	.017	9.584	.097	49.227	.088	.379	.000	100.087
Maximum:	40.686	.011	.017	9.584	.097	49.227	.088	.379	.000	100.087
										•
Delet	Delete Selected Line(s) Undelete Selected Line(s)				ie(s)	Analyze S	elected Line	(\$)		
Сору	SiO2	TiO2	AI2O3	FeO	MnO	MgO	CaO	NiO	0	Total 🔺
14 G	40.686	.011	.017	9.584	.097	49.227	.088	.379	.000	100.0
									Cancel	lext //

From the **Analyze!** window, click the **Add To Setup** button.

Click the **Elements/Cations** button.

The Analyzed and Specified Elements window opens, click the Save Sample Setup button.

The **Sample Setup Selection** window appears. The Olivine Sample Setup has been added to *Available Sample Setups* list box. If the user wishes to modify the *Sample Setup Description* either change the label using the **Name/Description** button in the **Analyze!** window before clicking the **Add To Sample Setups** button or from the **Sample Setup Selection** window, delete the just loaded selection (highlight the appropriate selection) and then edit the *Sample Setup Description* text field and click the << **Add To Sample Setups** button, storing the Olivine setup along with the previously stored Pyroxene setup.

Sample Setup Selection	
Available Sample Setups	Sample Setup Description
12 Pyroxene Sample Setup	Olivine Sample Setup
17 Olivine Sample Setup	< Add To Sample Setups
	Un 4 Olivine Sample Setup TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 0, MagImag = 40) Image Shift (X,Y): -2, 3
	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182)
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) ni ka Spectro 3 LIF (115.279) o (specified)
Delete Selection(s) From Sample Setups	
Clear Sample Setup Selection(s)	OK Cancel

Click the **OK** button of the **Sample Setup Selection** window returning to the **Analyzed and Specified Elements** window.

Click the **OK** button to go back to the **Analyze!** window.

Any number of sample setups can be created as described above.

The user now has two calibrated sample setups available to analyze any pyroxene or olivine in the samples supplied for microprobe analysis. The olivine setup (last) is currently active however to recall any other sample setup, follow the steps outlined below.

Bring forward the **Acquire!** window. Move to the next unknown analysis spot, in this example the user wishes to analyze several pyroxene grains.

Acquire!							
1 2 228.128 89.5225 115.2		Progress/Bea	um Deflection				
1-PET 2-TAP 3 4.00 4.00 91. 95. Current Sample: Un 4 Olivi Normal Acquisition Unknown Data Rows: 1 Go	-LIF Fai 4.00 181. 300 ine Sample Setup bod Data Rows: 1	Start Standard Star	or Unknown Acquisition t Wavescan	3.44996 um .000000 px 0	27.5378 .000000 0		
New Sample	PHA	Move		Stage	Magnification Beam Mode	400 Analog Spot	
Liements/Cations Peak/Scan Options A		Acqu	uisition Uptions	Imaging	Kilovolts Room Current	15	
Analytical Conditions	alytical Conditions Count Times S		ecial Options Bate Meter	Peaking Options Start Peaking	Beam Size	10	

Click the **New Sample** button.

The **New Sample** window opens. Enter the appropriate text into the *New Sample Name* and *New Sample Description* fields.

Click the Load Sample Setup button.

This opens the **Sample Setup Selection** window.

Select the Pyroxene setup, highlighting it allows the operator to view the element list.

Sample Setup Selection							
-Available Sample Setups	Sample Setup Description						
12 Pyroxene Sample Setup	Pyroxene Sample Setup						
17 Olivine Sample Setup	Add To Sample Setups						
	Un 2 Pyroxene Sample Setup TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 0 MagImag = 40)						
	Image Shift (X,Y): -2, 3						
	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182)						
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	cr ka Spectro 3 LIF (159.211) fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) na ka Spectro 2 TAP (129.282)						
Delete Selection(s) From Sample Setups							
Clear Sample Setup Selection(s)	OK Cancel						

Click the **OK** button of the **Sample Setup Selection** window to load the sample setup.

The program returns to the **New Sample** window. Click the **OK** button.

The **Acquire!** window reappears.

🕌 Acquire!							
1 2 3 X Y 228,128 89,5225 115,280 3,44996 27,5378 1			z w 485 1.00000	Progress/Beam Deflection			
1-PET 2-TAP	3-LIF Fa	araday					
4.00 4.00 91. 95.	4.00 181. 30	1.00			•	•	
Current Sample: Un 5 * Pyroxene S2-123 C1-1 Normal Acquisition Unknown Acquisition					3 44996	27 5378	
Data Rows: 0 Good Data Rows: 0			Star	um .000000 px 0	.000000		
New Sample PHA		1	Move	Stage	Magnification	400	
Elements/Cations	Peak/Scan Options	Acquisition Options		Imaging	Beam Mode Kilovolts	Analog Spot	
Analytical Conditions	alytical Conditions Count Times S		ecial Options	Peaking Options	Beam Current Beam Size	30	
Combined Conditions	Locate	Rate Meter		Start Peaking	Acquire String		

Double check your spot selection and focus and click the **Start Standard or Unknown Acquisition** button to initiate data acquisition.

The availability of multiple sample setups during the course of automated unknown analysis gives the user tremendous flexibility. Upon activation of the **Use Digitized Sample Setups** button in the **Automate!** window, each unknown analysis may be based on a different sample setup that was specified when the unknown sample position was digitized. See the User's Guide and Reference documentation for more details.

File Setups

To load any sample setup from a previous probe run file, the file setup option is provided. These file setups are old Probe database files that contain old sample setups and may or may not contain standardization count intensity data.

The example below will illustrate how to use the file setup option to easily import two different (an olivine and a pyroxene) sample setups into the current new probe run. Open a new PROBE FOR EPMA run and click the **New Sample** button from the **Acquire!** window.

Acquire!									
1 2 3 x y z w 228.128 89.5225 115.280 3.44996 27.5378 10.9485 1.00000						Progress/Beam Deflection			
_	1-PET	2-TAP	3-LIF		Faraday			_	
	.00	.00	.00		.00				
					.000000				•
Current Sample:					Start Standard or Unknown Acquisition Start Wavescan		3.44996 um .000000 px 0	27.5378 .000000 0	
	Ne w San	nple	PH	IA		Move	Stage	Magnification Beam Mode	400
	Elements/C	ations	Peak/Sca	n Option	s Acqu	isition Options	Imaging	Kilovolts	
	Analytical Co	onditions	Count	Times	Sp	ecial Options	Peaking Options	Beam Current Beam Size	40
	Combined Co	onditions	Loc	ate		Rate Meter	Start Peaking	Acquire String	

The New Sample window appears. Edit the New Sample Name text box.

Click the Load File Setup button.

The **Load File Setup** window opens and will list all available PROBE FOR EPMA files that can be loaded. The initial available Probe Run Files directory pointer is the location specified when opening a new probe database file earlier. Move to another directory location if necessary. The last file listed in the available Probe Run Files along with the last entry in the *Samples List* will be shown by default.

In this example, the file STILLWATER OL-PX.MDB was newly created and the user will load both an olivine and a pyroxene sample setup into this file.
Scroll through the available Probe Run Files list and highlight the file to load from. The last sample setup will be displayed in the *Samples List* and *Element List* text field. Next, select the sample setup that you wish to load into the new probe run. All of the run parameters and options for that sample setup will be loaded. The only parameters not loaded are the nominal beam current and the volatile element assignments since they are unknown sample specific.

Load File Setup	
C:\UserData\Master Sample Setups	
Amphibole setup.MDB 9/15/2010 9:50:54 PM Carbonate setup.MDB 9/14/2010 3:04:17 PM COPR Setup.MDB 5/13/2008 2:06:19 PM Feldspar setup.MDB 9/13/2010 11:04:43 AM Olivine-Pyroxene setup.MDB 5/13/2010 11:05:47 PM Opaque setup.mdb 9/15/2010 11:53:19 AM REE setup.MDB 9/15/2010 9:52:40 AM	Change Folder
Dan Kremser element and sample setups-AT manual	OK Cancel
Un 4 Olivine #117 check TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDof =0 MagImag =40)	Search for Files
Samples List	Element List
St 207 Set 1 Kyanite St 210 Set 1 Wollastonite St 212 Set 1 Rutile St 220 Set 1 Rhodonite St 220 Set 1 Cr2O3 Un 2 Pyroxene #164 check St 206 Set 2 Orthopyroxene Un 3 * setup for olivine analyses St 222 Set 1 Ni-Olivine Un 5 * Pyroxene S2-123 C1-1 Un 4 Olivine #117 check	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182) fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) ni ka Spectro 3 LIF (115.279) o (specified)

Click the **OK** button to load in this sample setup of interest.

The **NewFileSetupLoadStandardData** window appears next, asking whether the user wants the previous standard intensity data to be loaded as well.

NewFileSetupLoadStandardData							
?	Do you want to load the stan	dard intensity	data from (0), if r	not already loaded?			
	<u>Y</u> es	No	Cancel				

Selecting **Yes** would load the old standard intensity data from the file setup into this new run. Depending on the stability of your instrument, it may or may not be necessary to re-standardize some or all of the standards. In this case, the user chooses to load the standard intensity data, selecting the **Yes** button.

The NewFileSetupLoadStandardData window appears.

Click the **OK** button.

The **New Sample** dialog box reappears.

Click the **OK** button to complete the loading of the olivine sample setup from the old probe run.

📕 Acquire!					
1 2 228.128 89.5225 11	3 x 5.280 3.44996 27.537	¥ 78 10.9	z w 485 1.00000		Progress/Beam Deflection
1-PET 2-TAP					
	0	00000			•
Current Sample: Un 1 Normal Acquisition Unkn	* olivine setup own		Start Standard or Unknown Acquisition		3.44996 27.5378
Data Rows: 0	Good Data Rows: 0		Star	um .000000 .000000	
New Sample PHA			Move	Stage	Magnification 400 Beam Mode Analog Spot
Elements/Cations Peak/Scan Options Acqu		Acquisition Options Imaging		Kilovolts	
Analytical Conditions	Count Times	Sp	ecial Options	Peaking Options	Beam Current 30 Beam Size 10
Combined Conditions	Locate		Rate Meter	Start Peaking	Acquire String

The program now returns to the fully active **Acquire!** window.

Normally the user would check the calibration by running a secondary standard or two to verify the composition, repeaking and/or collecting standard intensities as required.

The user then opens the **Analyze!** window to save this olivine setup as a sample setup in this current probe run.

Nalyze!						
Sample List (multi-select) (double-cli	ck to see intensity data) ——	Analyze	Data	KRaws	Comb	ine Analysis
Standards Un 1 * olivine se Unknowns	tup	Combine Select	Combine Selected Samples >>Excel			
O Wavescans						
C All Samples		Use All Matri	Combine Data Lines			
Add To Setup		Delete Selecter Undelete Selecter	Delete Selected Sample(s) Undelete Selected Sample(s)			
Save Setups		Combined Cond	itions Cour	t Times	Sort S	tat and Data
Specified Concentrations Standar	d Assignments Name/Desc	ription Conditions	Elements	Cations	Grids I or Ato	n Geological mic Number
	Total Calcu Exces	Oxygen lated Oxygen ss Oxygen	Z - Bar Atomic W	ight % eight		Order
Сору						
		11				•
Delete Selected Line(s)	Undelete Selected Line(s) Analyz	e Selected Lin	e(s)		
Copy A A A A A A A A A A A A A A A A A A A						▲
				C	ancel	Next //

Click the **Add To Setup** button.

Click the **Elements/Cations** button, opening the **Analyzed and Specified Elements** window.

Click the **Save Sample Setups** button.

The **Sample Setup Selection** window opens. Edit the *Sample Setup Description* text box and click the **<< Add To Sample Setups** button, resulting in the following window.

Sample Setup Selection	
Available Sample Setups	Sample Setup Description
9 olivine setup	olivine setup
	<< Add To Sample Setups
	Un 1 olivine setup TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 400, MagImag = 40) Image Shift (X,Y): -2, 3
	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182)
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) ni ka Spectro 3 LIF (115.279) o (specified)
Delete Selection(s) From Sample Setups	
Clear Sample Setup Selection(s)	OK Cancel

Click the **OK** button, returning to the **Analyzed and Specified Elements** window. Click this **OK** button to return to the **Analyze!** window.

If another, previously created sample setup is needed for this current probe run, open the **New Sample** window and follow the instructions of the past eight pages.

Remember to save each sample setup in the **Sample Setup Selection** window as described above.

Sample Setup Selection	
-Available Sample Setups	Sample Setup Description
9 olivine setup	pyroxene setup
13 pyroxene setup	Add To Sample Setups
	Un 2 pyroxene setup TO = 40, KeV = 15, Beam = 30, Size = 10 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 400, MagImag = 40) Image Shift (X,Y): -2, 3
	si ka Spectro 1 PET (228.132) ti ka Spectro 3 LIF (191.114) al ka Spectro 2 TAP (89.5182)
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	cr ka Spectro 3 LIF (159.211) fe ka Spectro 3 LIF (134.634) mn ka Spectro 3 LIF (146.149) mg ka Spectro 2 TAP (106.846) ca ka Spectro 1 PET (107.534) na ka Spectro 2 TAP (129.282)
Delete Selection(s) From Sample Setups	
Clear Sample Setup Selection(s)	OK Cancel

Returning to the **Acquire!** window, the user can now employ either sample setup for probe work.

📕 Acquire!						
1 2	3 X	Y Z	W		Progress/Bea	m Deflection
1 228.128 89.3223 1						
00 00	00	3-LIF Faraday				
		000000			•	
Current Sample: Un 2 * pyroxene setup						
Normal Acquisition Unk	nown		Start Standard	or Unknown Acquisition	3.44996	27.5378
Data Rows: 0	Good Data Rows: 0		Start Wavescan			.000000 N
New Sample	РНА	K	Nove	Stage	Magnification	400
Elements/Cations	Peak/Scan Options	Acquisit	tion Options	Imaging	Beam Mode Kilovolts	Analog Spot
Analytical Conditions	Count Times	Specie	al Options	Peaking Options	Beam Current	30
Combined Conditions	Locate	Rat	e Meter	Start Peaking	Acquire String	10

Wavescans

Quick Wavescan Acquisition

This feature is useful if an EDS detector is not available or WDS resolution over the entire spectrometer range is required. The program will move each spectrometer currently assigned to it's upper limit and then continuously scan each spectrometer to it's lower travel limit while acquiring simultaneous count data. The count time used for the **Quick Wavescan Acquisition** is specified in the **Count Times** dialog box, opened from the **Acquire!** window. The current sample setup specifies which spectrometer and reflecting crystal to use. The program uses the spectrometer calibration of the first acquired element (order = 1) in the sample.

From an open PROBE FOR EPMA run, containing an unknown sample and the appropriate unknown under the crosshairs, click the **Special Options** button from the **Acquire!** window.

🕌 Acquire!						
1 2 228.128 89.5225 11	3 x 5.280 3.44996 27.537	¥ 8 10.94	z w 485 1.00000		Progress/Bea	m Deflection
1-PET 2-TAP 3-LIF Faraday .00 .00 .00 .00 000000						
Current Sample: Un 1 * Quick Wavescan Normal Acquisition Unknown			Start Standard or Unknown Acquisition Start Wavescan		3.44996 um .000000	27.5378 .000000
New Sample PHA		Move	Stage	Magnification Beam Mode	400 Analog Spot	
Elements/Cations	Peak/Scan Options	Acqu	isition Options	Imaging	Kilovolts	15
Analytical Conditions	Count Times	Sp	ecial Options	Peaking Options	Beam Current Beam Size	<u>30</u> 10
Combined Conditions	Locate		Rate Meter	Start Peaking	Acquire String	

This opens the **Volatile Calibration and Quick Wavescan Samples** window. Note the default acquisition option is *Normal Acquisition*.

v	olatile Calibration and Quick Wavescan Samples	
	Special Sample Acquisition Options	ОК
	Acquire a normal standard, unknown or wavescan sample.	Cancel
	 Self Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample that uses a calibration curve based on itself. The TDI assignment Synchronous 	
	will be made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. sample	Setups
	Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog.	
	Time Dependent Intensity (TDI) Count Time Intervals 5 Acquire TDI Data on Standard Samples	
	Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent intensity calibration sample for each acquisition.	
	Time Dependent Intensity (TDI) Sample Name	
	pyroxene setup Time Dependent Intensity (TDI) Assigned Calibratio	
	Time Dependent Intensity (TDI) Count Time Intervals 5	
	Stage X Increment (um)	
	Stage Y Increment (um)	
	Quick Wavescan Acquisition Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition.	
	Quick Wavescan Sample Name	
	pyroxene setup Quick Wavescan	
	Quick Scan Speed % (.001 - 100) 10	
	Use ROM Based Spectrometer Scan	

Select the *Quick Wavescan Acquisition* dialog button. Enter a *Quick Wavescan Sample Name* and *Quick Scan Speed* into the text fields. The smaller the scan speed percentage the slower the spectrometer will travel per second and of course each instrument would require different settings.

Volatile Calibration and Quick Wavescan Samples	
Special Sample Acquisition Options	ОК
Normal Acquisition	
Acquire a normai standara, unknown or wavescan sample.	Cancel
Self Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample that Consider usin	ng
uses a calibration curve based on itself. The TDI assignment will be made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample.	s" er Setups TDI eam pre
Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog.	nt ·
Time Dependent Intensity (TDI) Count Time Intervals	
Acquire TDI Data on Standard Samples	
assignment is made subsequently in the Standard Assignments dialog in the Analyze! window. This method will create a new time dependent intensity calibration sample for each acquisition. Time Dependent Intensity (TDI) Sample Name pyroxene setup Time Dependent Intensity (TDI) Assigned Calibrati	0
Time Dependent Intensity (TDI) Count Time Intervals	-
Stage X Increment (um)	=
Stage X Increment (um)	-
	-
Quick Wavescan Acquisition Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition.	
Quick Wavescan Sample Name	
Quick Scan Speed % (001 - 199)	_
4.1	
Use ROM Based Spectrometer Scan	

Click the **OK** button to return to the **Acquire!** window.

To initiate the quick wavescan acquisition, click the **Start Wavescan** button in the **Acquire!** window. A new wavescan sample is automatically started using the sample name just supplied. The spectrometers move to their respective upper limits and proceed with the wavescan. The **Wavescan Acquisition** window opens and real time data display is viewable. A completed three-spectrometer **Wavescan Acquisition** window appears below.

The size of each graph maybe expanded (not shown) by clicking on the relevant wavescan. Upon completion of the quick wavescan, the data may be exported via the **Export Data** button to an ASCII file or examined in more detail along with KLM marker overlay capabilities from the **Plot!** window. Printing of the quick wavescan is possible by selecting the **Print** option under the **Graph Data** window (see next section for a specific example).

Calibrated Multi-Element Wavescans

Another unique feature of PROBE FOR EPMA is the ability to acquire calibrated multi-element wavescans. This provides an easy and rapid method to scan **all** elements in a sample for off-peak interferences. The example below will illustrate calibrated wavescans on a ten-element pyroxene sample and the adjustment of off-peak background positions.

Open a new PROBE FOR EPMA run in the usual manner. Confirm motor and crystal positions as well as setting the beam current to the appropriate value. Click the **New Sample** button and create a sample using the elements of interest. Next, re-peak the elements using either manual or automatic peaking on the appropriate standards. This calibrates the spectrometer motors. And finally, move to the sample to perform the calibrated wavescan.

From the Acquire! window, click the New Sample button to create a wavescan sample.

📕 Acquire!						
1 2 228.140 89.5139 19	3 X 1.106 3.44996 27.537	¥ 8 10.9	z w 485 1.00000		Progress/Bea	m Deflection
1-PET 2-TAP 3-LIF Faraday .00 .00 .00 .00 0000000						,
Current Sample: Un 1 * template for wavescan Normal Acquisition Unknown			Start Standard Star	or Unknown Acquisition rt Wavescan	3.44996 um .000000	27.5378 .000000 0
New Sample PHA		Move	Stage	Magnification Beam Mode	400 Analog Spot	
Elements/Cations Peak/Scan Options Acq		Acqu	Acquisition Options Imaging		Kilovolts	15
Analytical Conditions Count Times Spe		ecial Options	Peaking Options	Beam Current Beam Size	40	
Combined Conditions	Locate		Rate Meter	Start Peaking	Acquire String	

The **New Sample** window opens. Select the *Wavescan* check button as the *New Sample Type*. Edit the *New Sample Name* and *New Sample Description* text fields.

Click the **OK** button.

The program returns to the **Acquire!** window.

📕 Acquire!					_	
1 2	3 X	¥	Z W		Progress/Beam Deflect	tion
1-PET 2-TAP						
.00 .00	.00	.00 .00				
	0					
Current Sample: Wa 1	* Wavescan on Hedenbe	rgite	Start Standard	2 44000 27 527	70	
Normal Wavescan: Step/	(Count Scan		<u>L</u>	3.44996 27.537 um .000000 .00000	0)0	
Data Rows: 0	Good Data Rows: 0				рх 0 0	
New Sample	PHA		Move	Stage	Magnification 400	0
Elements/Cations	Peak/Scan Options	Acqu	uisition Options	Imaging	Beam Mode Analog	Spot
Analytical Conditions	Count Times	Sp	ecial Options	Peaking Options	Beam Current 40	1
Combined Conditions	Locate		Rate Meter	Start Peaking	Beam Size 10 Acquire String	<u> </u>

To modify the wavescan range and/or number of data points to be collected, click on the **Peak/Scan Options** button in the **Acquire!** window.

Select the *Wave Scan Limits* check button under *Display:* and click on the appropriate element row to edit the parameters. The stage may also be moved (incremented) during the acquisition using the *Stage Step During Peakscan/Wavescan or Peaking (X and Y Axis)* check box and *Increment Size (microns)* text field.

Inannel	Element	Spectro	Crystal	Wave-Hi	Wave-Lo	Wave-Pts	Hi-Off	Lo-Off	
1	si ka	1	PÉT	232.479	223.985	100	4.34789	-4.1470	
2	ti ka	3	LIF	194.704	187.536	100	3.58954	-3.5777	
	al ka	2	TAP	99.8831	80.5209	100	10.3649	-8.9972	
	cr ka	3	LIF	163.062	155.208	100	3.85172	-4.0029	
i	fe ka	3	LIF	138.824	130.282	100	4.18993	-4.3521	
	mn ka	3	LIF	150.248	142.052	100	4.09908	-4.0970	
	mg ka	2	TAP	116.179	98.4268	100	9.33347	-8.4188	
	ca ka	1	PET	113.696	101.318	100	6.16216	-6.2153	
1									
	na ka	2	TAP	137.608	121.450	100	8.32600	-7.8316	
	na ka k ka	2 1	TAP PET	137.608 130.000	121.450 110.000	100 100	8.32600 10.2140	-7.8316 -9.7860	
0 Display : - On/Off Wave S Peak S	na ka k ka Peaks Scan Limits can Limits	2 1 pos peał	TAP PET	Offsets" are the y tables) and the not had a peak e close to zero.	difference betw e actual or mea center procedu	100 100 veen the theoriti sured peak poir re performed the is "Offset = Pre	a. 32600 10.2140 cal or predicte sition. If the spi en the "Offsets dicted - Actua	-7.8316 -9.7860 ed peak ectrometer " value will	OK
0 isplay : - On/Off Wave 1 Peak S Peakin	na ka k ka Peaks Scan Limits g Parameters	2 1 S	TAP PET	Offsets" are the y tables) and the not had a peak te close to zero.	121.450 110.000 difference betwee actual or mea center procedu The calculation sed Spectron	100 100 reen the theoriti sured peak po- re performed th is "Offset = Pre	8.32600 10.2140 cal or predicte sition. If the spi en the "Offsets dicted - Actua	-7.8316 -9.7860 d peak ectrometer " value will	OK
0 isplay : - On/Off Wave S Peak S Peakin	na ka k ka Peaks Scan Limits g Parameters Stage During	2 1 S S S S S S S S S S S S S S S S S S	TAP PET	Offsets" are the y tables) and the close to zero.	difference betw e actual or mea center procedu The calculation sed Spectron nd Y Axis)	100 100 veen the theoriti sured peak po: re performed th n is "Offset = Pre neter Scannir	8.32600 10.2140 cal or predicte sition. If the spi en the "Offsets dicted - Actua	-7.8316 -9.7860 ed peak ectrometer " value will	OK Cancel

The user wishes to adjust the spectrometer start and stop values for k ka, click on the row of that element.

P	eak and Scan Properties					
[-Enter Peak and Scan Prop	erties For: k ka	a 1 PE	т ——		OK Cancel
		Spectrome	eter	Ange	strom	
	On Peak	119.786		3.74243		Enter Positions in
	Hi Off Peak	123.694		3.86454		Spectrometer Units
	Low Off Peak	115.877		3.62029		C Angstrom Units
						Display Positions in ———
	Wavescan Hi Limit	130.000		4.06157		Absolute Position
	WaveScan Low Limit	110.000		3.43666		Relative Offset
	Wavescan Points	100	ſ	.202020	per step	The on-peak element in a
						wavescan sample is simply there
	Peakscan Hi Limit	124.145		3.87863		purposes. Specifically the
	Peakscan Low Limit	115.349		3.60379		spectrometer unit to angstrom conversion. However, the high and
	Peakscan Points	40	[.225538	per step	low scan limits may be arbitrarilly set to any value in the total
	Peaking/BOM Start Size	112207		002509		spectrometer range.
	Dooking Stop Size	.112207		.003500		Set Wavescan Full Range
	Peaking Stop Size	.007486		.000234		Set Wavescan Normal
	Minimum P/B		3.00			Move To On Peak
	Minimum Peak Counts (cps)	10.0			Set On Peak To Default
	Maximum Peaking Attempts	5	30			Sot On Poak To Current
						Secon Peak To Current

This opens the Peak and Scan Properties window. Adjust the appropriate values.

Click the **OK** button of the **Peak and Scan Properties** window when done editing.

Then click the OK of Peak and Scan window to close.

Wavescan count times for each element are adjusted via the **Count Times** button in the **Acquire!** window.

bunt Times										
- Click Element Row to Edit Count Times-										
Channel	Element	Spectro	Crustal	On-Pook	Hi-Dook	Lo-Pook	MaxCount Easter	Waya	Pook	Quick
1	ci ko	apeciio		20.00	100	4 00		4 00	0 00	
2	sika tika	2		20.00	4.00	4.00		4.00	0.00	.50
2	u Ka	J 9		20.00	4.00	4.00		4.00	0.00	.30
3 A	arka	2		20.00	4.00	4.00		4.00	0.00	.50
F	to ko	J 2		20.00	4.00	4.00		4.00	0.00	.30
о с	ne ka	3 2		20.00	4.00	4.00		4.00	0.00	.30
7	ma ko	J 9		20.00	4.00	4.00		4.00	0.00	.30
0	my ka	1		20.00	4.00	4.00		4.00	0.00	.30
0		1 9		20.00	4.00	4.00		4.00	0.00	.30
3	na ka	1		20.00	4.00	4.00		4.00	0.00	.30
	кка			20.00	4.00	1.00	10000001.00	4.00	0.00	
Beam Aver Nominal Br	ages	10.		2083 se	cs PET	2 3 TAP LIF	1			ОК
Change the normalizati intensity dis for c	Change the Nominal Beam to modify the normalization constant used for the x-ray intensity display. For example, enter 1 (nA)			34 n Calculated Spectromet Motion and	nin I K er	Na Fe	-			Cancel
Return To (Crystal Flip Set Columr	On-Peak T) Time) (TKCS) T	ime 2 s 0 s ime 2 s	ecs ecs	Acquisitior Time 0 se	Ca Si CS	Mg Cr Al Ti				Measure Nominal Beam

Click on the appropriate element row to edit the wavescan time. Edit the **Count Time Properties** dialog box and then click it's **OK** button to close.

Click the **OK** button to close the **Count Times** window.

Click the **Start Wavescan** button in the **Acquire!** window to initiate the calibrated multielement wavescan. The **Wavescan Acquisition** window opens. The program will automatically start acquiring the wavescan ranges selected. If more than one element is assigned to a given spectrometer, the program will automatically go to the next element's wavescan range after the previous wavescan element range is completed. The order of acquisition is defined in the **Acquisition Options** window. Below illustrates a completed wavescan acquisition.

As the wavescan is acquiring data, the wavescan graph may be viewed in greater detail by clicking on the graph to toggle/expand the display size.

The *Position* (spectrometer units), *Angstroms*, and *Counts* in any channel may be read by placing the cursor on the graph. Selecting the *Load Xray* check box and clicking the graph, loads the NIST x-ray database.

After all wavescans have been acquired on the sample, the user would typically inspect off-peak interferences and background locations by using the **Plot!** window. Note that if more than 100 points were acquired in a wavescan be sure to highlight all of the "continued" samples associated with the wavescan.

Select an *X*-Axis parameter (normally a specific spectrometer) and a *Y*-Axis parameter (normally the associated wavescan counts). The number (X) after the element in each *List* designates the spectrometer employed to collect the data. Finally, click the *Line* check button under *Graph Type*.

Plot!			
Sample List (multi-select) ○ Standards ○ Unknowns ○ Wavescans ○ Digitized ✓ Acquired Only Select All Select Analyze!	Use Manual Selection 1 Wavescan on Hedenbergite #66 2 continued	Output Target Send Data to Plot Window Send Data to ASCII File (X.) Send Data To Printer (sepa Include Deleted Points Data Point Labels ASCII File Column Labels Force Black and White Print Normalize Samples (Y Sets)	Y, (Z)) rate samples) Run Information Sample Names SURFER .BAS File Off Peak Labels Normalize Y Sets
X-Axis		Y-Axis (multi-select)	-Graph Type
Line Numbers Line Numbers (relative) On Beam Current Ab Beam Current Date Time Elapsed Hours X Stage Coordinates Y Stage Coordinates W Stage Coord	 ▲ Line Numbers Line Numbers (relative) On Beam Current Ab Beam Current DateTime Elapsed Hours X Stage Coordinates Y Stage Coordinates Y Stage Coordinates W Stage Coordinates Relative Microns Si ka (1) Wavescan Counts Ti ka (3) Wavescan Counts Si ka (1) Wavescan Counts Cr ka (3) Wavescan Counts Fe ka (3) Wavescan Counts Si Fe ka (3) Wavescan Counts Mn ka (2) Wavescan Counts Ka (1) Wavescan Counts Ka (1) Wavescan Counts Si ka (1) Wavescan Counts Ka (2) Wavescan Counts Si ka (1) Wavescan Counts Si ka (1) Wavescan Counts Si ka (1) Wavescan Counts Si ka (1) Spectrometer Ti ka (3) Spectrometer Al ka (2) Spectrometer ✓ Cr ka (3) Spectrometer 	Line Numbers Line Numbers (relative) On Beam Current Ab Beam Current Date Time Elapsed Hours X Stage Coordinates Y Stage Coordinates Y Stage Coordinates W Stage Coordinates Relative Microns Si ka (1) Wavescan Counts Al ka (2) Wavescan Counts Cr ka (3) Wavescan Counts Fe ka (3) Wavescan Counts Mn ka (2) Wavescan Counts Mn ka (2) Wavescan Counts Mg ka (2) Wavescan Counts Na ka (2) Wavescan Counts Na ka (2) Wavescan Counts Si ka (1) Wavescan Counts Na ka (2) Wavescan Counts Si ka (1) Spectrometer Ti ka (3) Spectrometer Al ka (2) Spectrometer Cr ka (3) Spectrometer	 Scatter Line Linear-Log 3-D (three axes) Average Only Minimum Total Sum > 98 Intensity Error Bars Plot Error Bars Plot Error Bars n Sigma 1 ▼ n Spacing 1 ▼ Output Close

Click the **Output** button to graph the wavescan.

The **Plot Graph Data** window opens displaying the plotted components. The currently selected off-peak positions for background measurements are also indicated (green).

To evaluate potential interferences select a *KLM Markers* option (*Analyzed Elements* check button, for instance) to view the KLM markers or use the **Load Xray Database** button.

Click and drag the mouse to **Zoom** in on any portion of the graph. The **Plot Graph Data** window open below illustrates this powerful feature and the identification of the small x-ray peaks (satellite lines) to the high-energy side of the main silicon x-ray peak.

The off-peak positions for background determinations for quantitative samples are adjusted with the **Low** and **High** buttons (located lower right of **Plot Graph Data** window).

In the next screen capture, detailing K(1) Wavescan Counts (PET cps) versus K(1)Spectrometer, the user will note that the high background position falls on top of the signal from Fe K $\alpha_{1,2}$ second order. This could give an anonymously high background reading on this sample, if iron is present. Therefore, the user chooses to move the high background slightly to a lower spectrometer position.

Click the **High** button, move the mouse cursor (note it appears as a cross on the graph) to an appropriate new position and click the graph.

The graph will update the new off-peak position (purple is the old position, green the new position).

Click the **OK** button of the **Graph Data** window. The **GetPeakSave** window appears.

The new parameters will take effect on the next new sample that is started

GetPea	kSave
٩	New parameters will take effect on the next new sample that is started
	ΟΚ

Click the **OK** button to accept and store the new high background position for K Ka x-rays.

Polygon Gridding – Using Surfer Option

Another useful feature of PROBE FOR EPMA is the ability to perform automated polygon gridded analyses of unknowns. After acquiring the digitized data set, PROBE FOR EPMA can create a script file (if the SURFER.BAS file option is selected in the **Plot!** window) for use with SURFER for Windows to automatically generate contour, surface and *.GRD concentration files of your data. These *.GRD files can be imported into Probe Image for viewing in false color. The images will be quantitatively registered during the import process so that color represents elemental or oxide concentration.

In this example an unknown and complexly exsolved pyroxene (see image below) will be gridded and digitized, then run quantitatively. Move to the unknown grain location.

_ 🗆 🗙 Automate! Position List (multi-select) (double-click to see data) Automation Actions Move Stage **Confirm Standard Positions** Standards 0 Unknowns Confirm Unknown Positions Wavescans Digitize **Confirm Wavescan Positions** All Samples Peak Spectrometers Peaking Plot - 💌 Acquire Standard Samples Acquire Unknown Samples Fiducials elect Stds Acquire Wavescan Samples Select All Acquire Standard Samples (again) Г Replicates Go **Automation Options** Conditions Auto Focus Peak on Assigned Standards Update Sample Setups Use "Quick" Standards File Setups Use Filament Standby Afterwards Delete All Re-Load ✓ Use Confirm During Acquisition Multiple Setups Use Beam Deflection For Position Suppress ROM Based Backlash **Delete Selected Samples** Import from ASCII (*.POS File) Confirm All Positions In Sample **Delete Selected Positions** Export Selected Samples (to *.POS) Combine Multiple Sample Setups Row Υ Z w Grain # x Focus Use ROM Auto Focus O New Sample O Every Point O Digitized C Interval Standard Points To Acquire 4 Automate Confirm Delay (sec) 10 Standard X Increment (um) 10 Re-Standard Y Increment (um) 10 Re-Standard Interval (hrs) 6 Use Last Unknown Sample O Use Digitized Conditions O Use Digitized Sample Setups Use Digitized File Setups \bigcirc O Use Digitized Multiple Setups **Run Selected Samples**

Click the **Digitize** button of the **Automate!** window.

The **Digitize Sample Positions** window opens.

📕 Digitize Sample F	ositions			_ 🗆 X				
Sample Type Standard Unknown Wavescan	Sample TypeTo create a new unknown position, click the Unknown Sample Type option, enter a sample name and click the Create New Unknown or Wavescan button. To create a new standard position, click the Standard Sample Type option and select a standard from the Standard List.							
Referenced To F N	Referenced To Fiducial Set: 0, Setup Number: 0 and File Setup: NONE and Multiple Setups: NONE							
Positions	Picture	e Snap!		Stage				
Add New Unk	nown To Positions Added 1	on List Fo Run (s	Auto Auto elect to cre	Increment Digitize 1				
Ado	J/Remove Stan	<mark>dards T</mark> o	/From Run					
1 Incre	ment Grain	🗌 Us	e Digitized	AutoFocus Number Size				
💀 Single F	oint(s)		Shotgun	12 40				
Linear T	raverse		Rectan	gular Grid				
Digitize	Image	×.	Polyg	gon Grid				
	Digitize Cluster	r (of Rand	dom Points)				

Select the Unknown check button from the Sample Type choices.

Enter a new sample name in the *Unknown or Wavescan Position Samples* text field, and click the **Add New Unknown To Position List** button.

Pigitize Sample Positions	Automate!	X
Sample Type C Standard C Unknown Sample Type option, enter a sample mem and cirk the Create New Unknown or Wavescan button. To create a new standard C Wawnorg position, click the Standard Sample Type option and	Position List (multi-select) (double-click to see data) C Standards Un 1 Fid 0 * SW-123 Pyroxene Diotilize Diotilize	Automation Actions Confirm Standard Positions Confirm Unknown Positions Confirm Wavescan Positions
select a standard from the Standard List Referenced To Fiducial Set 0, Setup Number: 0 and File Setup: NONE and Multiple Setups: NONE	All Samples Plot Fiducials	Peak Spectrometers Peaking Acquire Standard Samples Acquire Unknown Samples
Positions Picture Snapl Stage	Select Stas Select All Go	Acquire Wavescan Samples Acquire Standard Samples (again)
SW-123 Pyroxene	Auto Focus Update Sample Setups	Peak on Assigned Standards
Â	Delete All File Setups	Use "Quick" Standards
	Delete Selected Samples Import from ASCII (*.POS File)	Use Beam Deflection For Position
Add New Unknown To Position List	Delete Selected Positions Export Selected Samples (to *.POS)	Confirm All Positions In Sample
-Standard Compositions Added To Run (select to create new)	Row X Y Z W Grain # Focus	Use ROM Auto Focus C New Sample C Every Point Digitized C Interval Standard Points To Acquire 4
Add/Remove Standards To/From Run		Automate Confirm Delay (sec) 10 Standard X Increment (um) 10
Improvement Grain Use Digitized AutoFocus Number Size Number Size		Re-Standard Y Increment (um) 10 Re-Standard Interval (hrs) 6
Single Point(s) Shotgun 12 40 Linear Traverse III Rectangular Grid Digitize Image Yeolygon Grid	KeV+ 15 Curr + 40 Size + 10 Mag + 40 Mode + Analog Spot MagAnal = 2000 MagImag = 40 ImgShift =-2, 3 = 0 = 0 Size Setue = MONE	Use Last Unknown Sample Ouse Digitized Conditions Use Digitized Sample Setups Ouse Digitized File Setups
Digitize Cluster (of Random Points)	Multiple Setups = NONE Replicates = 1	C Use Digitized Multiple Setups Run Selected Samples

A digitized polygon area grid will now be setup on the unknown grain.

Click the **Polygon Grid** button at the bottom of the **Digitize Sample Positions** window.

The Polygon Grid Parameters window opens.

Row	×	Y	7		UK
					Cancel
<u> </u>	Add Polygon	Boundary C	oordinate	▶	Test Load
Plot Po	lygon Boundar	y Rer	nove Last Po Position	lygon	
◯ Use A ● Use 3I	veraged Z Posi D Plane Fit Z Po	ition of Polyg osition of Pol	jon Boundary Iygon Bounda	/ Coordina ary Coordi	ites inates
○ Use A ● Use 31 Grid Stag	veraged Z Pos D Plane Fit Z Po e Step Sizes —	ition of Polyg osition of Pol	jon Boundary lygon Bounda	/ Coordina ary Coordi	ites inates
○ Use A ● Use 31 Grid Stag K Grid Sta Y Grid Sta	veraged Z Pos D Plane Fit Z Po e Step Sizes — p Size In Micro p Size In Micro	ition of Polyg osition of Pol ons ons	jon Boundary lygon Bounda	v Coordina ary Coordi .000000	ites inates
○ Use A Use 3 Grid Stag Grid Sta Grid Sta Y Grid Sta Y Number Y Number	veraged Z Pos D Plane Fit Z Po e Step Sizes p Size In Micro p Size In Micro r Of Points In Gi r Of Points In Gi	ition of Polyg osition of Pol ons ons rid	jon Boundary lygon Bounda	/ Coordina ary Coordi .000000	ites inates
○ Use A ● Use 31 Grid Stag < Grid Sta < Grid Sta < Grid Sta < Number < Number Calcul	veraged Z Pos D Plane Fit Z Po e Step Sizes — p Size In Micro p Size In Micro r Of Points In Gr r Of Points In Gr ate Number Of	ition of Polyg osition of Pol ons ons rid Points In Pol	jon Boundary lygon Bounda ygon >	v Coordina ary Coordi 0000000	ttes inates
 ○ Use A: ○ Use 3 Grid Stag ≺ Grid Stag ∠ Grid Stag ∠ Grid Stag ∠ Number ∠ Number ∠ Calcul □ Stag 	veraged Z Pos D Plane Fit Z Po e Step Sizes — p Size In Micro p Size In Micro r Of Points In Gr r Of Points In Gr ate Number Of gger the Grid P	ition of Polyg osition of Pol ons ons rid rid Points In Pol Points	jon Boundary lygon Bounda ygon >	/ Coordina ary Coordi .000000	utes inates
 ○ Use A: ○ Use 3] Grid Stag × Grid Stag × Grid Stag × Grid Stag × Number × Number × Calcul ○ Stag 	veraged Z Pos D Plane Fit Z Po e Step Sizes — p Size In Micro p Size In Micro r Of Points In Gr of Points In Gr ate Number Of gger the Grid P	ition of Polyg osition of Pol ons ons rid rid Points In Pol Points Coordinates	jon Boundary lygon Bounda ygon > and Bounda	v Coordina ary Coordi 0000000 0000000	utes inates

The user will outline the perimeter of the grain to be gridded. An easy way to accomplish this is to image the grain with backscattered electrons, at any magnification, and trace around the grain boundary. Start in one corner and on a recognizable feature, click the **Add Polygon Boundary Coordinate** button and then move linearly toward another feature or edge, clicking the **Add Polygon Boundary Coordinate** button to outline this portion of the grain. Continue to trace line segments around the grain, clicking the **Add Polygon Boundary Coordinate** button to enclose

another portion of the grain. Eventually, returning to the starting point, completing the enclosure.

In this example, twenty line segments were used to enclose the grain of interest. Each end point is listed in the *Polygon Grid Stage Coordinate Boundary Points* text box. If a mistake is made or you simply wish to remove the previous boundary point, click the **Remove Last Polygon Position** button.

Click the **Plot Polygon Boundary** button to inspect the perimeter just drawn.

To start over and re-draw the perimeter outline again, click the **Close** button on the **Polygon Plot** window, click the **Cancel** button of the **Polygon Grid Parameters** window, and the click the **Polygon Grid** button of the **Digitize Sample Positions** window.

When satisfied with the outline of the grid, click the **Close** button of the **Polygon Plot** window.

Polygon Grupa	Store Coordin	ata Baundan	Dainta	
Polygon Grid	Stage Coordin	late Boundary	Points	ок
12	27.0759	31.5605	11.1451 🔺] [
13	27.2444	31.5994	11.1171	Cancel
14	27.0605	31.8654	11.1419	
15	27.0567	31.0791	11.1420	
16	27.3036	31.8187	11.1434	
17	27.1575	32.0145	11.1472	
18	27.4033	31.8310	11.1011	
19	27.1011	31.2082	11.1176	
20	27.1516	31.9513	11.1189	
•			· •	4
				Test
A.	dd Polygon Bo	undary Coord	inate	
l C	da i olygoli bo		indie	beol
Diet Delver	D d	Remove	Last Polygon	
Plot Polygo	on Boundary	P	ocition	
Polygon Grid O Use Avera O Use 3D Pl	Z Interpolation aged Z Positior ane Fit Z Positi	options of Polygon E ion of Polygor	loundary Coordin 1 Boundary Coor	nates dinates
Polygon Grid O Use Avera O Use 3D Pl Grid Stage St	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes	o Options	Coundary Coordin Boundary Coord	nates dinates
Polygon Grid O Use Avera O Use 3D Pl Grid Stage St X Grid Step S	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns	of Polygon E	Coundary Coordin Boundary Coor	nates dinates
Polygon Grid O Use Avera O Use 3D Pl Grid Stage St Grid Step S Y Grid Step S	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes fize In Microns fize In Microns	of Polygon E	oundary Coordin Boundary Coor 20 20	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St Grid Stage St Grid Step St Number Of	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid	of Polygon E	oundary Coordin Boundary Coor 20 20	nates dinates
Polygon Grid Use Avera Grid Stage St Grid Stage St Grid Step St Grid Step St Number Of St Number Of St	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid Points In Grid	of Polygon E	oundary Coordin 1 Boundary Coor 20 20 37	nates dinates
Polygon Grid O Use Avera O Use 3D Pl Grid Stage St Grid Step S Y Grid Step S Y Grid Step S Number Of Y Number Of	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid Points In Grid	of Polygon E	20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St Grid Step S Grid Step S Grid Step S Number Of Number Of Calculate	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point	of Polygon E ion of Polygon	20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St Crid Step S Grid Step S Y Grid Step S X Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	of Polygon E ion of Polygon nots In Polygor	20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St X Grid Step S Y Grid Step S Y Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n options of Polygon E ion of Polygon nts In Polygon	20 20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage Sl X Grid Step S Y Grid Step S Y Grid Step S X Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n Options of Polygon E ion of Polygon nts In Polygon	20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage Sl Grid Step S Grid Step S Grid Step S Grid Step S Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes fize In Microns fize In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n of Polygon E n of Polygon E non of Polygon nts In Polygor ts	Coundary Coordin Boundary Coor 20 20 37 47 •>	hates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St X Grid Step S Y Grid Step S X Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n of Polygon E ion of Polygon nts In Polygor ts	Boundary Coordin 20 20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St X Grid Step S Y Grid Step S X Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n of Polygon E ion of Polygon nts In Polygor ts	Boundary Coordin 20 20 20 37 47	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St X Grid Step S Y Grid Step S X Number Of Y Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n of Polygon E ion of Polygon nts In Polygor ts	Coundary Coordin Boundary Coordin 20 20 20 37 47 •>	nates dinates
Polygon Grid Use Avera Use 3D Pl Grid Stage St Carid Step St Y Grid Step St Number Of Calculate Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns Size In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n options of Polygon E ion of Polygon nts In Polygor ts	Coundary Coordin Boundary Coordin 20 20 20 37 47	nates dinates
Polygon Grid © Use Avera © Use 3D Pl Grid Stage Sl X Grid Step S Y Grid Step S Y Number Of Y Number Of Calculate © Stagge	Z Interpolation aged Z Position ane Fit Z Positi tep Sizes ize In Microns ize In Microns Points In Grid Points In Grid Number Of Point r the Grid Point	n options of Polygon E ion of Polygon nts In Polygor ts	20 20 20 37 47 Boundary	hates dinates

Enter *Grid Stage Step Sizes* (in microns) for both X and Y.

Click the **Calculate Number of Points in Polygon>** button to determine how many data points will be digitized. Readjust the *X* and *Y* Grid Step Sizes if necessary. Select a method of Z determination from the two option buttons under *Polygon Grid Z Interpolation Options*.

The **DigitizeSaveGrid** window appears with the number of points in an ideal rectangular grid.

Click the **Yes** button to calculate the total number of points.

Polygon Grid Pa	lygon Grid Parameters							
Polygon Grid	d Stage Coordir	nate Boundary	Points					
12	27.8179	31.4998	11.1357					
13	27.4815	Cancel						
14	27.6178 32.0464 11.1087							
15	27.7053 31.9735 11.1037							
16	27.8086 32.0291 11.1030							
17	27.2021 31.4524 11.1114							
18	27.3683 31.8584 11.1274							
19	27.1548	31.6883	11.1213					
20	20 27.6127 31.9798 11.1372							
•			►					
			1	Test				
/	Add Polygon Bo	undary Coord	linate					
				Load				
Plot Polyg	jon Boundary	Remove F	e Last Polygon Position					
Grid Stage S X Grid Step S Y Grid Step S X Number Of	 Use 3D Plane Fit Z Position of Polygon Boundary Coordinates Grid Stage Step Sizes X Grid Step Size In Microns Y Grid Step Size In Microns 10 							
Y Number Of	f Points In Grid		84					
Calculate	Number Of Poi	nts in Polygo	1640	1				
Stagg	Stagger the Grid Points							
Plot Coordinates and Boundary								
Determinate: Fit Coefficient Standard dev Specimen tilt ThetaX = -1.2 Specimen tilt ThetaX =71	Determinate: 26.2528430259109 Tit Coefficients: 12.19041 -1.249581E-02 -2.282514E-02 Standard deviation: 1.276821E-04 Specimen tilt in radians: ThetaX = -1.249548E-02 ThetaY= -2.282316E-02 Theta= 2.601987E-02 Specimen tilt in degrees: ThetaX =7159384 ThetaY= -1.307671 Theta= 1.490829							

When the appropriate gridding parameters have been set, click the **OK** button, closing the **Polygon Grid Parameters** window.

The **DigitizeSaveGrid** window re-appears, click the **Yes** button.

DigitizeSa	eveGrid	×
?	3740 points (assuming a rectangular grid) is a lot of points, are you sure that you want to digitize this many points	?
	<u>Y</u> es	

The program automatically digitizes each of the number of points in the polygon and returns to the **Automate!** window.

📕 Automate	!							
-Position Li	st (multi-sele	ect) (double-o	click to se	ee data) ——				Automation Actions
O Standar	rds Un	1 Fid 0 SW-	123 Pyrm	rene		Move	Stage	Confirm Standard Positions
Unknow	/ns		1231 910	(Cile				Confirm Unknown Positions
O Waveso	cans					Dig	jitize	Confirm Wavescan Positions
🔿 All Sam	ples							Pask Spectrometers Pasking
	•					P	lot	Acquire Standard Samples
Select St	tds					Fidu	ıcials	Acquire Unknown Samples
Select	All							Acquire Wavescan Samples
Go						Repl	icates	Acquire Standard Samples (again)
Auto Foc	cus					Conc	litions	Automation Options
Update	e					Sample	e Setups	Peak on Assigned Standards Use "Owiek" Standards
Delete /	AII					File S	Setups	Use Filament Standards
Re-Loa	ıd 📃					Multiple	e Setups	Use Confirm During Acquisition
								Use Beam Deflection For Position
Del	lete Selected	d Samples		Import fro	m ASCI	I (*.POS F	ile)	Suppress ROM Based Backlash
Del	ete Selected	Positions		Export Selec	ted Sa	nples (to *	.POS)	Confirm All Positions In Sample
								Combine Multiple Sample Setups
Row	X 27.05500	Y 20 60010	L 11 294	W 4	Gra	in #F		Use ROM Auto Focus
2	27.03505	30.60919	11 284	89 4	1			C New Sample C Every Point
3	27.81589	30.60919	11.284	89 4	1		0	C Digitized C Interval
4	27.79589	30.60919	11.284	89 4	1	1	0	
5	27.77588	30.60919	11.284	89 4	1	1	0	Standard Points To Acquire
6	27.73489	30.62919	11.284	89 4	1	1	D	Automate Confirm Delay (sec) 10
7	27.75489	30.62919	11.284	89 4	1		0	Ctandard V Is aromant (um)
8	27.77489	30.62919	11.284	89 4	1			Standard X Increment (um) 20
9	27.79489	30.62919	11.284	89 4	1			Re-Standard Y Increment (um) 20
11	27.01405	30.62919	11.204	03 4 89 <i>4</i>	1		n	Do-Standard Interval (bre)
12	27.85489	30.62919	11 284	89 4	1		n	
13	27.87489	30.62919	11.284	89 4	1		0	
14	27 89489	30.62919	11 284	89 4	1	1	n 🗾	Use Last Unknown Sample
KeV = 15 (Durr = 30 Size	= 10 Mag = 4	100 Mode 10 Ima	= Analog Spot	Samp	ole Setup (ro	ow) Number	O Use Digitized Conditions
IVD	ay A nai - 2000	mayimay = ·	io ingan	nt = -2, J		- 0		O Use Digitized Sample Setups
F	File Setup = C:\	Probe Operato	ors\Kremse	er\element-samp	le setup	MDB (12)		 Use Digitized File Setups Use Digitized Multiple Setups
	Multi	iple Setups = N	IONE			Replicate	s = 1	Run Selected Samples

Click the **Plot** button in the **Automate!** dialog box to open the **Position Plot** window and view the locations of all of the digitized points in this sample. In this example, the 10 micron spacing creates too many points to be individually visible on this view.

Click the **Close** button of the **Position Plot** window to return to the **Automate!** dialog box.
The user should proceed with calibration and standardization of the elements in the probe run and checking the accuracy of the standardization.

Then, to run the just digitized polygon grid sample from the **Automate!** window, highlight it in the *Position List*. Under the *Automation Actions*, click the *Acquire Unknown Samples* check box. Finally, click the **Run Selected Samples** button.

📕 Automate	1							
-Position Li	-Position List (multi-select) (double-click to see data)							Automation Actions
 Standards Un 1 Fid 0 SW-123 Pyroxene Unknowns Wavescans 				Move Dig	Stage itize	Confirm Standard Positions Confirm Unknown Positions Confirm Wavescan Positions		
	v					PI	ot	Peak Spectrometers Peaking Acquire Standard Samples
Select S Select /	tds All					Fiducials Acquire Unknown Sample		Acquire Unknown Samples Acquire Wavescan Samples Acquire Standard Samples (again)
Go Auto Foo	cus					Cond	itions	Automation Options
Update	e					Sample	Setups	Peak on Assigned Standards
Delete /					_	File S	etups	Use "Quick" Standards
Re-Loa	ıd 📃					Multiple Setups		Use Confirm During Acquisition
Del	lete Selected	Samples		Import from	ASCII	(*.POS Fi	le)	Suppress ROM Based Backlash
Del	ete Selected	Positions	E	cport Selecte	ed Samples (to *.POS) Confirm All Positions In Sam			Confirm All Positions In Sample
Row	Х	Y	Z	W	Grai	n# F	ocus 🔺	Lico ROM Auto Focus
1	27.85589	30.60919	11.28489	4	1	0		O New Sample O Every Point
2	27.83589	30.60919	11.28489	4	1	0		C Digitized C Interval
4	27.79589	30.60919	11.28489	4	1	0		
5	27.77588	30.60919	11.28489	4	1	0		Standard Points To Acquire 5
6	27.73489	30.62919	11.28489	4	1	0	1	Automate Confirm Delay (sec) 10
7	27.75489	30.62919	11.28489	4	1	0		Standard V Incompart (um)
8	27.77489	30.62919	11.28489	4	1	0		Standard × Increment (um) 20
9	27.79409	30.62919	11.20403	4	1	u 0		Re-Standard Y Increment (um) 20
11	27.83489	30.62919	11.28489	4	1	0		Be-Standard Interval (brs)
12	27.85489	30.62919	11.28489	4	1	0		
13	27.87489	30.62919	11.28489	4	1	0		
14 27 89489 30 62919 11 28489 4 1 KeV = 15 Curr = 30 Size = 10 Mag = 400 Mode = Analog Spot Sample S MagAnal = 2000 MagImag = 40 ImgShift = -2, 3 State = 10 State = 10 <td< td=""><td>le Setup (ro = 0</td><td>w) Number</td><td> Use Last Unknown Sample Use Digitized Conditions Use Digitized Sample Setups Use Digitized File Setups </td></td<>						le Setup (ro = 0	w) Number	 Use Last Unknown Sample Use Digitized Conditions Use Digitized Sample Setups Use Digitized File Setups
F	File Setup = C.\Probe Uperators\Kremser\element-sample setup.MDB (12) O Use Digitized Multiple Setups							
Multiple Setups = NONE					F	Replicates	6 = 1	Run Selected Samples

The AutomateConfirmSelected window opens and the user clicks the Yes button to activate the acquisition.

AutomateConfirmSelected: Using Last Unknown Sample							
?	Number of Standard Position Samples: 0 Number of Unknown Position Samples: 1 Number of Wavescan Position Samples: 0						
	Elapsed Time for Last Unknown Acquisition: 126 seconds						
	Projected Time for All Unknown Acquisitions: 55.99 hours Total Projected Time for All Acquisitions: 55.99 hours						
	Are you sure you want to run these automated position samples?						
	<u>Y</u> es <u>N</u> o						

Note, acquisition time is now calculated.

Upon completion of the data acquisition, open the **Plot!** window.

Select (highlight) all of the unknown digitized points (Un6-35 in this example). Click the *Minimum Total* check box to skip low points (analyses in holes, etc). Select the *3-D* check button under *Graph Type*.

Click the *Send Data to ASCII File* check button. This activates the other check boxes listed here. Click the *SURFER.BAS File* check box and select an *X-Axis, Y-Axis* and *Z-Axis (multi-select)* parameters to plot.

Plot!					
-Sample List (multi-select)		Output Target			
Sample List (muit-select)	Use Manual Selection	Output l'arget			
◯ Standards Un 6 S	W-123 Pyroxene	O Send Data to Plot Window			
● Unknowns Un 7 co	ontinued	Send Data to ASCIL File (X)			
Un 8 cc	ontinued	C Cond Data To Drinter (con or	······································		
Un 9 co	ontinued	 Send Data To Printer (separate samples) 			
O Digitized Un 10 c	ontinued 📃				
Un 11 c	ontinued	Include Deleted Points	Run Information		
Un 12 c	ontinued	Data Point Labels	Sample Names		
Acquired Unly Un 13 c	ontinued	ASCII File Column Labels	SUBFER BAS File		
Select All Un 14 C	ontinued	Erroe Black and White Print	Off Pask Labels		
Calast taskusl	ontinued				
Select Analyze! On To C	onunued	Normalize Samples (* Sets)	Normalize r Sets		
X-Axis	Y-Axis	Z-Axis (multi-select)	Graph Type		
CaO Oxide Percents	CaO Oxide Percents	Si Elemental Percents	C. Castler		
Si Atomic Percents	Si Atomic Percents	Al Elemental Percents	C scatter		
AI Atomic Percents	Al Atomic Percents	Fe Elemental Percents	C Line		
Fe Atomic Percents	Fe Atomic Percents	Mn Elemental Percents	🔿 Linear-Log		
Mn Atomic Percents	Mn Atomic Percents	Mg Elemental Percents	3-D (three axes)		
Mg Atomic Percents	Mg Atomic Percents	Ca Elemental Percents			
Ca Atomic Percents	Ca Atomic Percents	SIU2 Oxide Percents			
Si Formula Atoms	Si Formula Atoms	AI2U3 Uxide Percents -	Average only		
Al Formula Atoms	Ai Formula Atoms	HeO Oxide Percents	Minimum Total		
Ma Eormula Atoms	Ma Formula Atoms	MaO Oxide Percents	Sum > 00		
Ma Formula Atoms	Ma Formula Atoms	CaO Oxide Percents	90		
Ca Formula Atoms	Ca Formula Atoms	Si Atomic Percents			
Elemental Totals	Elemental Totals	Al Atomic Percents	-Intensity Error Bars		
Oxide Totals	Oxide Totals	Fe Atomic Percents	Plot Error Bars		
Atomic Totals	Atomic Totals	Mn Atomic Percents			
Formula Totals	Formula Totals	Mg Atomic Percents	n Sigma 👔 👻		
Line Numbers	Line Numbers	Ca Atomic Percents	n Specing		
Line Numbers (relative)	Line Numbers (relative)	Si Formula Atoms			
On Beam Current	On Beam Current	Al Formula Atoms			
Ab Beam Current	Ab Beam Current	Fe Formula Atoms			
DateTime	DateTime	Mn Formula Atoms	Output 🗲		
Elapsed Hours	Elapsed Hours	Mg Formula Atoms			
X Stage Coordinates	X Stage Coordinates	Ca Formula Atoms			
Y Stage Coordinates	Y Stage Coordinates	Elemental Totals	Close		
			Cancel Next		

Click the **Output** button. Calculations happen for all samples.

The **Open File To Save ASCII Data To** window opens. Adjust the *Save in:* location if required. Enter a *File name:* in the text field provided.

Open File To Save	ASCII Data To				? ×
Save in:	🔁 Probe Projects I		•	← 🗈 💣 🎟▼	
My Recent Documents Desktop My Documents My Computer	i ityhall.dat				
	, File <u>n</u> ame:	SW-123.dat		•	Save
	Save as <u>t</u> ype:	ASCII Data Files (*.DAT)		•	Cancel

Click the Save button.

The **PlotDoFile** window opens, click the **OK** button.

Another **PlotDoFile** window appears.

PlotDoFi	le service de la constant de la cons	×
į)	Surfer .BAS File Saved to C:\UserData\Probe Projects FY11\SW-123.BAS Surfer .BLN File Saved to C:\UserData\Probe Projects FY11\SW-123.BLN (if required)	
	To automatically create gridded data plots, run Golden Software's Scripter program, open the above .BAS file and click the Run contr	ol.
	OK	

Click the **OK** button to create these files.

The SW123.BAS script file created above contains the OLE code for generating contour and surface plots of the digitized probe data.

To run the SW123.BAS script file, double click on the **GS Scripter32** icon in the PROBE FOR EPMA Software folder on the desktop. Select the **File** | **Open** menu.

The **Open Document** window appears.

Open				? ×
Look in: 🔂 P	robe Projects FY11	• •	1 🕂 🎫	
My Recent Documents Desktop My Documents My Computer	V-123.BAS			
File <u>n</u>	ame:		•	<u>O</u> pen
My Network Files	of type: Sax Basic (*.BAS,*.OBM,*.O	LS)	•	Cancel

Edit the Look in: directory to identify the location of the SW123.BAS file.

Click the **Open** button.

GS Scripter now details the open SW123.BAS file, of which a portion is illustrated below.

The default output mode of the script file is "TEST", which will only output the plots to the screen. To produce output to the default printer, comment out the line OutputType\$ = "TEST" by placing a single quote in front of the line and uncomment the line OutputType\$ = "SURF" by removing the single quote in front of it (highlighted in next screen capture).

🔟 sw-123 * (script) - Scripter [design]	_ 🗆 🗙
File Edit View Script Debug Sheet Help	
B 🖆 🛃 🎒 🥌 Run F5 🕑 🦉 🕨 II 🗉 🕙 & ↔ 🗣 🗊 🗊 🔛	
Object: (Genera Pause Proc: (declarations)	•
1 Director,	
File\$ = "SW-123"	
Sample\$ = "Un 6 SW-123 Pyroxene"	
MaxColt - 6	
XLabel\$ = "X Stage Coordinates"	
YLabel\$ = "Y Stage Coordinates"	
ZLabel\$(0) = "SiO2 Oxide Percents"	
ZLabel\$(1) = "Al203 Oxide Percents"	
ZLabel\$(2) = "FeO Oxide Percents"	
Zlabel\$(3) = "MnO Oxide Percents"	
ZLabels $(4) = "Mgo Oxide Percents"$	
Zhabely(3) - Cao Oxfue Percents	
' ATTENTION! ATTENTION! ATTENTION ATTENTION! ATTENTION! Surfer 6.0 version	
' The last UNcommented "OutputType\$" variable will determine the output	
'OutputType\$ = "TEST"	
OutputType\$ = "SURF"	
Print "No output types = "" Then	
Find No Sucput type specified	
endif	
' The last UNcommented "GridMethodType%" variable will determine the grid method	
' GridMethodType% = 0 ' Inverse Distance	
GridMethodType% = 1 Kriging	
GridMethodTypes = 2 Minimum Curvature	
' GridMethodType% = 4 ' Badial Bias	
' GridMethodType% = 5 ' Shepard's	
' GridMethodType% = 6 ' Triangulation	•
Start or resume the script NUP	1 //.

Click **Run** | **Start** menu to begin the automated plotting.

Basic contour and surface maps will be output to the printer. Raw data concentration (*.GRD) files will also be created; these may be opened in SURFER for further modification and output.

An example of a basic contour map for calcium is shown below. The perimeter of the pyroxene grain is visible. Regions of higher calcium concentrations appear dark in this view.

SW-123 PYROXENE: CALCIUM CONTOUR MAP

The next screen capture illustrates a 3-D surface map for iron in the pyroxene. Here, the image of iron concentration (vertical scale) has been rotated and tilted slightly.

SW-123 PYROXENE: IRON SURFACE MAP

(This page intentionally left blank)

Stage Bit Maps and Picture Snap! Feature

Unknown or standard samples loaded into the electron microprobe can present some difficulty to the user in terms of rapid and precise positioning or the location of small phases or specific areas of interest to analyze upon a large sample. On the JEOL 733 microprobe the user has several options for searching for analysis or standard locations. An optical image (reflected or transmitted light) or a video feed of the same image is available but at only one relatively high magnification, about 400 times. Additionally, one can search for the area of interest utilizing the secondary or backscattered detectors on the microprobe at variable magnifications (ranging as low as 40 times), but this can be time consuming. Still the entire sample may not be in one field of view upon observation in the chamber.

Another device employed to aid in feature location and rapid positioning is a gridding device that holds a sample mounted in a standard holder under a moveable grid system. The rough coordinates of a region on the sample may be read off and used to effectively narrow the search for the analysis position.

Now, navigation around and exact positioning is easily accomplished using the stage bit map and Picture Snap! features in PROBE FOR EPMA. The Stage Bit Map feature will be discussed first. The **Stage** button is located in many locations in PROBE FOR EPMA programs; such as in the **Acquire!** window or from any **Move Motors and Change Crystals** (**Move** button) window.

Clicking the **Stage** button opens the **Stage Map** window. Two different maps are displayed below.

To select another *Holder Selection* image, simply select the file from the drop-down list box. Image files (windows metafiles (*.WMF)) and coordinate limits are specified in the Standards section of the PROBEWIN.INI file. The entire map maybe reduced or enlarged retaining scale using the **x0.8** or **x1.2** buttons or to re-size the Stage Bit Map window simply drag any corner of the window to the desired size and shape. The **minus** and **plus** button (upper left) minimizes the stage bitmap selection and cursor position display.

The current position is indicated as a small red-purple circle on the map. To move from one location to another, simply double-click on the spot you wish the stage to travel to. The current position (X and Y stage coordinates) is displayed above the **Remove Faraday**/**Insert Faraday** button. Digitized positions of various samples can also be viewed by selecting the appropriate radio button.

To create stage drawing maps of your standard holders, for instance, use a vector based drawing program (Micrografx Designer or the shareware program Metafile Companion¹) and the exact dimensions of your holders to build dimensionally correct drawings. These can be exported as windows metafiles and directly loaded into the graphical stage move feature in PROBE FOR EPMA.

¹Mention of specific third party software products does not imply their endorsement.

Each stage map must be calibrated in coordinate space for accurate movement to features on the map. Typically two diagonally located points near the edge of the map are chosen for calibration. Initiate the calibration routine by clicking the @ button (upper right) in the **Stage Map** window. The **MoveStageMapCalibrate** window appears.

MoveSta	MoveStageMapCalibrate								
?	Do you want to calibrate the current stage bitamp? You will need to click on two stage positions that you know the actual stage coordinates of.								

Click the **Yes** button to open the **Calibrate Stage Bit Map Min and Max** window for calibration.

Calibrate Stage Bit Map Min and Max		
Calibration Points		Close
Select	Vpdate 1st	
Select	Update 2nd	
Click each "Select" button and click the StageMap image on a position for which the actual stage coordinates are known (coordinates displayed are calculated from corner	Enter actual stage positions above (using the "Update" buttons or entering values manually) based on the optical stage coordinates.	
Calculate Corners	MinEdit in the values in the [Standards] section of your PROBEWIN.INI file for the calculated corner values. Depending on the polarity of your stage axes, the min and max may need to be swapped.	Re-Load INI Values

Click the top **Select** button, opening the **Stage Select** window.

Stage Select	
Select a position on the stage map to calibrate the stage	Cancel

Click on the unique position on the stage map to identify the stage coordinates.

These values appear next to the **Select** button chosen.

Calibrate Stage Bit Map Min and Max		
Calibration Points Select 3.46154, 18.2526	Vpdate	Close
Select	Update 2nd	
Click each "Select" button and click the StageMap image on a position for which the actual stage coordinates are known (coordinates displayed are calculated from corner	Enter actual stage positions above (using the "Update" buttons or entering values manually) based on the optical stage coordinates.	
Calculate Corners	MinEdit in the values in the [Standards] section of your PROBEWIN.INI file for the calculated corner values. Depending on the polarity of your stage axes, the min and max may need to be swapped.	Re-Load INI Values

Next, activate the microprobe imaging and zoom up in magnification to locate the exact spot you just selected. Either click the **Update** button or manually enter the stage coordinate information for the 1^{st} calibration point.

C	alibrate Stag	e Bit Map Mi	n and Max					
Г	-Calibration	Points —						0
	Select	3.46154, 18	.2526	Up	date 3.800	Y	1st	Close
	Select			Up	date		2nd	
	Click each "Select" button and click the StageMap image on a position for which the actual stage coordinates are known (coordinates displayed are calculated from corner			Enter actual stage positions above (using the "Update" buttons or entering values manually) based on the optical stage coordinates.				
	Calculate Corners	Nositions)	Y	Min Max	Edit in the values section of your PF the calculated Depending on t stage axes, the mi to be s	s in the [Stand ROBEWIN.INI d comer value he polarity of n and max ma swapped.	ards] file for es. your ay need	Re-Load INI Values

Click the lower **Select** button and repeat the process. Click on the second position on the image. Activate the imaging and find this exact point and update the position. The **Calibrate Stage Bit Map Min and Max** window will appear as below.

С	alibrate Stage	e Bit Map M	in and Max					
	-Calibration	Points ——						Class
	Select	3.46154, 10	3.2526	Up	X date 3.6000	Y 19.2500	1st	Cluse
	Select	28.4615, 40	0.6140	Up	date 28.5600	41.2499	2nd	
	Click each "Select" button and click the StageMap image on a position for which the actual stage coordinates are known (coordinates displayed are calculated from corner		n and click a position stage coordinates from corner					
	Calculate Corners	x	Y	Min Max	Edit in the values section of your PR the calculated Depending on th stage axes, the mir to be s	in the [Stand OBEWIN.INI corner value he polarity of and max me wapped.	ards] file for es. your ay need	Re-Load INI Values

Click the **Calculate Corners** button to obtain the correct corner values to calibrate your Stage Map. These values min and max values are entered into the Standards section of the PROBEWIN.INI file.

С	alibrate Stag	e Bit Map M	in and Max					
[-Calibration	Points ——						Class
	Colort				×	Y	_	Ciuse
	Select	3.46154, 18	3.2526	Up	date 3.6000	19.2500	1st	
	Select	28.4615, 40).6140	Up	date 28.5600	41.2499	2nd	
	Click each "Select" button and click the StageMap image on a position for which the actual stage coordinates are known (coordinates displayed are calculated from corner			ove r d on s.				
	Calculate Corners	Nositions) X -3.8496 36.0864	Y 1.29248 61.3063	Min Max	Edit in the valu section of your the calcula Depending of stage axes, the to b	ues in the [Stanc PROBEWIN.INI ted corner value on the polarity of min and max ma re swapped.	lards] I file for es. your ay need	Re-Load INI Values

Now this image is calibrated, so the user can easily "drive around" on the image.

The new **Picture Snap!** feature allows the user to incorporate images of your unknown thin section or polished mounts into PROBE FOR EPMA to aid in navigation and the digitizing of analysis locations. Images (BMP, JPEG, GRD) taken with a flatbed scanner or other camera system can be entered into **Picture Snap!**, then calibrated and used for analysis.

Picture Snap! dialog can be accessed from the Digitize Sample Positions window.

😼 Digitize Sample P	ositions					
Sample Type To create a new unknown position, click the Unknown Sample Type option, enter a sample name and click the Create New Unknown or Wavescan button. To create a new standard position, click the Standard Sample Type option and select a standard from the Standard List. Referenced To Fiducial Set: 0, Setup Number: 0 and File Setup:						
		pie Setups				
Positions	Pictur	e Snap!	1	Stage		
Unknown or Wave	escan Position	Samples (Name/De	scription)		
unknown sample						
Add New Unkr	nown To Positi	on List	Auto	Increment Digitize 1		
Standard Compos	sitions Added	To Run (se	lect to cre	eate new) —		
Add	/Remove Star	dards To/	From Run			
	mont Grain	Use	Digitized	AutoFocus		
				Number Size		
Single P	oint(s)		Shotgun	12 40		
Linear Tr	averse		Rectan	gular Grid		
Digitize	Digitize Image 🛛 🐨 Polygon Grid					
Digitize Cluster (of Random Points)						

Picture Snap! can also be accessed from the STAGE program by accessing the **Window** | **Picture Snap!** menu.

😹 Stage (Stage Control and Automation)									
File Edit Standard	Window Output Help								
1 2	Stage	Ctrl+S							
228.140 89.5139	Move	Ctrl+M							
Welcome to S 8.46 Written by J	Analytical Conditions Load Column Conditions From File Save Column Conditions To File		e Edition) v. John					
J. Donovan This software	Filament Standby Turn Detector Bias Voltages Off Turn Detector Bias Voltages On								
Dan Kremser Probe for EPMA	Reset Current Window Positions To Default								
Press the F1 k	Picture Shap:		e help. To get hel						
on a menu item	Digitize Positions Beam Deflection	Ctrl+D Ctrl+B	hit the F1	key.					
Initializing D Demonstration	Grid Minerals								
Motion: Ready			Cancel	Pause					

The main **Picture Snap!** window appears.

1	Picture Sn	ар					<u>_ D ×</u>	
Eile	<u>W</u> indow	<u>D</u> isplay	<u>M</u> isc					
								4
								1
				 	 	 	<u> </u>	

Select the **File** menu and open the appropriate image file.

Picture Snap	×
File Window Display Misc	
Open BMP Image	
Open GIF Image	П
Import Grid File As Image Save Image As GRD File	
Copy To Clipboard (method 1) Copy To Clipboard (method 2) Save As BMP (with graphics objects)	
Print Setup Print	
Exit	

Open File To Input	Bitmap Image Fro	m			<u>?</u> ×
Look <u>i</u> n:	🗀 Probe Projects F	Y11	•	← 🗈 📸 🎹 🔻	
My Recent Documents Desktop My Documents	COPR 200A.bmp				
My Computer					
	File <u>n</u> ame:	COPR 200A.bmp		•	<u>O</u> pen
Mv Network	Files of type:	Bitmap Image Files (*.BMP)		•	Cancel

The Open File To Input Bitmap Image From window opens.

Select the appropriate directory and file to open and click the **Open** button.

The image is displayed in the **Picture Snap!** window.

Select the **Window** | **Calibrate** menu.

Image calibration is accomplished using a two point method for rectangular mounts or a three point calibration when importing round images subject to rotation. Click the Point #1 Calibration **Pick Pixel Coordinate on Picture** button The **Picture Select Point** window appears, select the first unique point on the image.

The X,Y Pixel Coordinates are entered.

The values shown in the *X*, *Y* Stage Coordinates text boxes are the current stage location. Drive the stage to the same unique location and click the **Read Current Stage Coordinate** button.

The stage location for the first calibration point is entered.

Repeat these steps for the second calibration point, resulting in the following window.

Finally, click the Calibrate Picture button opening the PictureSnapSaveCalibration window.

Click the **OK** button to save the picture calibration.

The Picture Snap Calibration window now indicates that the Image Is Calibrated.

Close the Picture Snap Calibration window.

The operator can digitize analysis locations for later unattended work. Click the **Digitize** button.

This opens the familiar **Digitize Sample Positions** window.

🤗 Digitize Sample P	ositions						
Sample Type To create a new unknown position, click the Unknown Sample Type option, enter a sample name and click the Create New Unknown or Wavescan button. To create a new standard position, click the Standard Sample Type option and select a standard from the Standard List.							
Referenced To F N	Referenced To Fiducial Set: 0, Setup Number: 0 and File Setup: NONE and Multiple Setups: NONE						
Positions	Picture	e Snap!		Stage			
Unknown or Wave	escan Position	Samples (I	Name/De	escription)			
COPR 1-1							
				<u>^</u>			
Add New Unk	nown To Positi	on List	Auto	Increment Digitize 1			
Standard Compos	sitions Added 7	Fo Run (sel	ect to cre	eate new)			
Ado	l/Remove Stan	dards To/F	rom Run				
1 Incre	ment Grain	🗌 Use	Digitized	AutoFocus Number Size			
Single P	oint(s)	S	hotgun	12 40			
Linear Tr	raverse		Rectan	gular Grid			
Digitize	Image	¥.	Poly	gon Grid			

Create a new unknown. Double click on the spot for the first analysis point on the just calibrated image to drive the stage to those coordinates. Click the **Random Point(s)** button to digitize that sample location. Additional points maybe saved. All analysis locations can be viewed from the **Display** | **Unknown Position Samples** menu. All analysis locations can be acquired via the **Automate!** Window.

Modal Analysis

Modal analysis is a statement of the composition of a sample expressed in terms of the relative amounts of phases or minerals present. These volumetric proportions can be estimated from quantitative measurements made on the specimen by point counting analysis. This quantitative modal analysis on unknown compositions is based on a defined set of modal phases, selected from a standard database. Any database of standard compositions may be used to define the phases.

There are three basic steps involved in the modal analysis routine. This procedure involves initially the acquisition of a large set of compositional data acquired using either multiple traverses or large area gridding. It is assumed that this data set is statistically representative of the sample. In the example illustrated below, a large representative area of a fine-grained sandstone thin section was gridded and some 324 quantitative analysis points were collected.

The second step involves the creation of an input file to load into STANDARD for the actual modal analysis calculation. The simplest method of generating this input file is to use the **Plot!** window in PROBE FOR EPMA to output a *.DAT file of the elemental or oxide weight percent compositions to disk.

After data collection has been completed, open the **Plot!** window.

Highlight the compositional dataset in the Sample List.

Select the first oxide for the X-Axis and the remainder in the Y-Axis (multi-select) range.

Activate the *Send Data to ASCII File* (X, Y, (Z)...) check button and the *ASCII File Column Labels* check box. The labels are required so that the modal analysis routine can identify the elements in the input file.

The input file can come from any source as long as the element or oxide symbols are in the first line, enclosed within double quotes, and the data is in weight percent. The weight percent data can be in any format. Do not include a totals column.

Click the **Output** button.

The **Open File To Save ASCII Data To** window appears. Locate the appropriate directory under *Save in:* and type in a *File name:* in the text field provided.

Open File To Save ASCII Data To								
Save in:	🗀 Probe Projects f	FY11	•	⇐ 🗈 💣 🎞 ◄				
My Recent Documents								
Desktop								
My Documents								
My Computer								
	File <u>n</u> ame:	cityhall.dat		•	Save			
My Network	Save as <u>t</u> ype:	ASCII Data Files (*.	DAT)	•	Cancel			

Click the Save button.

The **PlotDoFile** window appears, indicating that the data was saved.

Click the **OK** button.

The data saved to the *.DAT file may be viewed using an editor such as Notepad. Here a portion of the CITYHALL.DAT file is displayed.

📕 cityh	all.dat - Notepad										_ 🗆 X
Ele Edi	t Format ⊻jew Help										
TK20 0	ide Percents*	"Na2O Oxide Percents'	"FeO Oxid	e Percents*	"CaO Oxide Percents"	*Al2O3 Oxit	de Percents"	"SiO2 Oxide Percents"	"MgO Oxide Percents"	"TiO2 Oxide Percents"	
3.21285	6 .084279	.057376	.434429	3.858789	11.172727	.001379	.018428				
.029560	.000000	.005280	.000000	.080792	98.047462	.000000	.073651				
.010591	.005989	.050260	.005228	.000000	97.690529	.018096	.000000				
.015457	.000000	.039683	.023569	.000000.	100.941032	.000000	.002845				
.196080	.000000.	218054	.291762	3.840241	91.151772	.024964	.000000				
.005303	.000000.	.025585	.003560	.000000.	102.645638	.000000.	.000000				
000000	.000000	.084513	.040705	.115520	83.195908	.000000	.000000				
.007942	.008243	.023802	.000000	.000000	104.154282	.000000	.063860				
088909	.006581	.221067	.178842	.561872	22.364765	.023032	.000018				
.065356	.004069	.075825	148523	.500650	91.250412	.044060	.009942				
.009299	.001981	.002643	.017831	.000000	104.538147	.000000	.000000				
.066057	.000000	.078260	.043218	1.223209	100.848114	.001021	.058022				
.012391	.006702	.000000	.000000	.041418	105.016945	.000000	.007092				
1.39660	5 .429426	10.343257	1.418726	15.628440	39.647465	1.691040	.209419				
15./19/	48 .323534	.015711	1.630254	16.16583	1 66.868698	.024850	.596850				
2.18457	5 .040035	2.433222	1.179096	18./3140	5 64.902748	.54/106	.129404				
056951	.040871	.044096	.1513/1	.154820	78.895401	.029395	.042584				
.825693	.005728	.375800	.881520	8.238678	28,404793	.142400	.052258				
005761	.000086	.000000	107028	.000000	107.281512	.057088	.046898				
.883969	.041141	.316267	.197036	2.821450	100.892586	.104131	.089292				
.824219	.000000	.623511	.302535	.378020	25.892721	.000000	.148095				
.202049	.017260	.324769	.107440	1.514305	99.554527	.089814	.038251				
.154851	.013922	.331124	.520921	1.330327	20.083922	.043340	.045254				
000000	.000000	041270	0012255	.000000	102.304387	.020756	.007077				
0027804	2 840057	110104	331256	4.912284	100.303430	.001364	.029766				
009030	2.040037	000700	010406	4.012204	102 0720250	049057	.000000				
274262	010040	0.000733	064700	2 206700	3 738107	226767	.000000				
004080	010040	0.040000	004904	2.200700	108 295905	016296	059291				
000000	000000	000000	000000	000000	105.473846	000000	000000				
024729	001342	213426	269299	648775	98 903633	014366	038330				
326807	009876	292103	102549	779127	100 376160	059064	002847				
039930	000000	248512	510183	297939	87 097351	040815	000000				
711713	075025	390320	10.025094	27 205224	5 35.033642	209004	000000				
5 03188	2 019644	884306	845424	1.058110	34 380589	003153	018432				
1.36925	5 716678	19.230335	1,933196	5.350651	11,796387	285482	035944				
.062419	013559	436762	666028	770793	53.322891	017525	.000000				
.016270	006575	011466	856160	522753	50.575279	.000000	015635				
233282	026764	444485	1.041039	2.560967	52.403080	.034018	.002833				
.003549	.000000	.017640	.019700	.000000	103.357697	.000000	.000000				
15.3807	72 .458129	.069916	127681	17.728588	8 63.592369	.050253	.049789				
.011483	.000000	.060119	.003167	.073101	213154	.002630	.008184				
.148872	.338388	.594192	.208916	4.304525	83.453362	.081257	.000000				
.033551	.010749	.218497	.091889	.000000	34.851734	.000000	.000000				
.703514	.037701	.329922	.520763	2.183847	83.350365	.070993	.014198				
9.14917	2 .000000	7.837607	.340207	18.815746	5 51.830448	3.062872	.498256				
.035299	.017275	.095572	.234628	.311152	8.419005	.012384	.000000				
000000	.000000	.000000	.040770	.000000	101.952583	.000000	.033974				
000000	.000160	.029046	000576	.000000	100.683693	.000000	.028342				
028276	.009007	.023819	.077136	.096716	86.557487	.022888	.015616				
.018123	.018542	.003528	.000000	.000000	100.846199	.000000	.021299				
.190222	.000000	.048482	.133665	.489082	99.002083	.008535	.000000				
.256549	.047021	.093494	.008789	.989440	99.107895	.000000	.160439				
.054191	.013174	.096807	.142536	.204400	76.857407	.000000	.021236				
000865	.000000	.012333	000000	.000000	99.854172	.000000	.028358				•

The third and final step involves the setup and running of the modal analysis calculation. The modal analysis routine is located in STANDARD. Open the program **Standard** from the PROBE for EPMA Software folder on the desktop.

Open Old Standar	d Database File	?×					
Look in:	C Probe for EPMA		💌 🗧 🖻 🚽	*			
My Recent Documents Desktop My Documents	amcsd.mdb Dana.MDB dhz.mdb dhz.mdb jeolel.MDB jeolox.MDB MANVSOFF-1.MDB Ore.MDB POSITION.MDB SETUP2.MDB SETUP2.MDB SETUP.MDB SETWARDB SETWARDB	3 s_06-11-2009.MDB				.46 novan	tal Weight % Bar mic Weight
	File name:	standard.mdb		• •	pen a	a menu it	em simply
Mv Network	Files of type:	*.MDB (*.MDB)		▲ Cε	ancel		
						Cancel	Pause //.

Select (highlight) a standard database that will be used to define the modal phases. Click the **Open** button to load this database.

Select **Options** | **Modal Analysis** from the menu.

Standard [C:\Program Files\Probe Software\Probe for EPMA\standard.mdb]	
File Edit Standards Options Xray Analytical Output Help Standards (double Search (for a standard name string) Find (a specific element range in all standards) 11 REE2 glass Find (a specific element range in all standards) 12 REE3 glass Modal Analysis (quantitative phase ID) 15 Coll glass Interferences (calculate spectral overlaps) 20 Divine Interferences (calculate spectral overlaps) 30 Oramet 41 11 Imenite 55	Standard Information Total Oxygen Calculated Oxygen Z - Bar Atomic Weight
Welcome to Standard, Probe for EPMA (Enterprise Edition) v. 8.46 Written by John J. Donovan, Copyright (c) 1995-2011 John J. Donovan This software is registered to : Dan Kremser Probe for EPMA Press the F1 key in any window for context sensitive help. To get help on a menu item si key.	imply highlight with the mouse and hit the Fl
	Cancel Pause //
The Modal Analysis window opens.

Modal Analysis			
Group Definitions	Phases	Standards	Close
New	New	Add	
Delete	Delete	Remove	Start
Group Options Minimum Total for Input Do End-Member Ca Normalize Concentr Weight Concentration	t Iculations rations For Fit ons For Fit	Phase Options Minimum Vector None O Olivine Feldspar Update Pha	 Pyroxene Garnet
Data Files Input Data File C:\UserData\modal.da	1		Browse
Ouput Data File	t		Browse

Start by defining an overall Group, click the **New** button under *Groups*.

The **ModalGroupNew** window opens. Enter a descriptive name for the group of phases.

Click the **OK** button. Default *Group* and *Phase Options* are loaded; these will be discussed and modified shortly.

Click the **New** button under *Phases*.

The **ModalPhaseNew** window opens. Enter the first modal phase. In this example, the sandstone is composed of mostly quartz with two minor feldspars; an alkali (sodium-potassium) phase and a plagioclase phase along with iron oxides and other trace accessory minerals. The first modal phase is entered into the text field.

Click the **OK** button.

Select the Add button under *Standards*, opening the Add Standards to Run window.

Choose standards to define this modal phase. These are the phase compositions that the program will use to match against the unknown point analyses. Try to avoid over-determining the phase. For example, when defining a sodium-potassium feldspar, select the two end-members (albite and microcline).

The **Modal Analysis** window would now appear as below.

Modal Analysis			
Group Definitions			
Groups	Phases	Standards	Close
Sandstone	Quartz	319 SiO2 Quartz Tay	
New	New	Add	
Delete	Delete	Remove	Start
Group Uptions Minimum Total for Inpu 95 Do End-Member Ca V Normalize Concentration Weight Concentration Update Gr	t Ilculations rations For Fit ons For Fit roup	Phase Uptions Minimum Vector 4 None Olivine Feldspar Update Pha	 Pyroxene Garnet
Data Files Input Data File C:\UserData\modal.ou	1		Browse
Ouput Data File			Brauna
C:\UserData\modal.ou	ıt		Browse

Continue and enter all phases, defining the phase compositions (standards) to match. The Alkali Feldspar entry is illustrated below.

Modal Analysis				
Group Definitions	Phases	Standards	3	Close
Sandstone	Quartz Plagioclase Alkali Feldspar	81 Albite 116 Micro) ocline	
New	New	A	\dd	
Delete	Delete	Rei	move	Start
Group Options Minimum Total for Inpu 95 Do End-Member Ca V Normalize Concentration Weight Concentration Update Gr	t Iculations rations For Fit ons For Fit roup	Phase Option Minimum Vec 4 None	ns tor) Olivine) Feldspar Update Pha	○ Pyroxene ○ Garnet <mark>se</mark>
Data Files Input Data File C:\UserData\modal.ou	1			Browse
C:\UserData\modal.ou	t			Browse

Once all of the phases have been identified and standards defined for matching, adjust the *Group* and *Phase Options*.

Modal Analysis Group Definitions Groups Sandstone	Phases Quartz Plagioclase Alkali Feldspar Opaques		Standards 41 Ilmenite 115 Magnetite	Close
New Delete	Ne w Delete		Add Remove	Start
Group Options Minimum Total for Inpu 95 Do End-Member Ca V Normalize Concent Weight Concentrati Update G	it alculations rations For Fit ons For Fit <mark>roup</mark>	Phi Mir 4	imum Vector imum Vector None O Olivine O Feldspar Update Pha	O Pyroxene O Garnet 1se
Data Files Input Data File C:\UserData\modal.ou Ouput Data File	Jt			Browse
C:\UserData\modal.or	ut			Browse

The *Minimum Total for Input* is the rejection sum for the unknown compositions, sums below this value will not be used in the modal analysis. Typically 90-95% are good cutoffs.

Select the *Do End-Member Calculations* option and check the appropriate mineral name under *Phase Options* to perform end-member calculations as listed.

The *Normalize Concentrations For Fit* option is used to specify whether the standard and unknown concentrations (above the just defined minimum input total) should be normalized to 100% before the vector fit is calculated.

The *Weight Concentrations For Fit* option is used to specify if the element concentrations for the standards should be weighted, based on the composition of the element in that phase. Select this option if the major elements in a phase should have greater influence in determining the vector fit. Leave unselected, if all concentrations, regardless of their abundance should have equal weight in the vector fit.

The *Minimum Vector* number (default is 4.0) is basically the tolerance for the match to a defined phase. If a closer match is desired for one or more phases in the group, decrease the vector value for that phase. See the User's Guide and Reference documentation for specific details on the calculation of this vector.

Finally, under Data Files, select the appropriate Input and Output Data File locations.

Group Definitions — Groups Sandstone	Phases Quartz Plagioclase Alkali Feldspar Opaques	Standards 41 Ilmenite 115 Magnetite
Ne w Delete	New Delete	Add Start
Group Options Minimum Total for Inp 90 Do End-Member C Vormalize Concen Weight Concentrat Update C	ut alculations trations For Fit ions For Fit iroup	Phase Options Minimum Vector 4 O Olivine O Pyroxene O Feldspar O Garnet Update Phase
Data Files Input Data File C:\UserData\Probe P	rojects FY11\cityhall.	dat Browse
Ouput Data File C:\UserData\Probe P	rojects FY11\modal.o	out Browse

Click the **Start** button to initiate the modal analysis calculation on each data point.

After the calculation finishes the **ModalStartModal** window appears, stating that the output data has been saved to the specified *.OUT file.

ModalSt	artModal 🛛 🗙	
į)	Output data saved to C:\UserData\Probe Projects FY11\modal.out	
	OK	

Click this **OK** button.

The modal analysis data may now be viewed in the log window in STANDARD or simply open the newly created *.OUT file. The output file contains the vector fit, matched phase, endmember calculation (if checked), totals column and composition of each line in the input file. Lines that do not meet the minimum total requirement are excluded from the output, if those lines are desired either cut and paste the entire output from the main STANDARD log window or capture the entire output by EARLIER selecting the **Output | Save To Disk Log** menu.

The results of the modal analysis are also tabulated and summarized. The end summary lists the total number of analyses, the minimum total for a valid composition, number of valid points that sum above the minimum sum, the number of matched points and the percentage of points that were matched.

For each phase, the summary output then lists the phase name, the number of matches for that phase, the percent of matched points, valid points and total matched points for the matches in that phase. This is followed by the average end-member (if selected), weight percent sum and composition for that phase and the standard deviation for each element.

The last page of the just run output file is displayed below.

Line	Vector	Phase	Sum	К2О	Na2O	FeO	CaO	A1203	SiO2	MgO	TiO2
	.05	Quartz	100.30	.03	.02	.10	.10	.08	99.93	.00	.04
269	.04	Quartz	99.50	.02	.01	.12	.00	.12	99.17	.00	.06
270	.00	Quartz	99.66	.00	.00	.02	.00	.00	99.60	.00	.04
271	.06	Quartz	99.97	.02	.01	.20	.00	.12	99.62	.00	.00
272			.21	.04	.00	.00	.02	.03	.12	.01	.00
273	.00	Quartz	99.10	.01	.00	.02	.01	.00	99.04	.00	.02
274	.02	Quartz	100.07	.00	.00	.01	.00	.19	99.87	.00	.00
275	.02	Alkali	99.50	.23	11.50	.32	.03	18.85	68.57	.00	.00
276			36.50	5.25	.13	1.22	1.35	6.90	21.61	.04	.00
277	.00	Quartz	99.68	.00	.00	.01	.00	.00	99.68	.00	.00
278	.04	Quartz	98.30	.07	.00	.00	.03	.15	97.96	.03	.06
279			.13	.00	.00	.05	.02	.01	.06	.00	.00
280	.02	Quartz	99.17	.00	.00	.13	.03	.00	99.00	.01	.00
281	.06	Alkali	98.43	15.22	.24	.07	.01	18.23	64.65	.01	.00
282	.00	Quartz	99.79	.01	.00	.03	.00	.00	99.75	.00	.00
283	.01	Plagioc	98.09	.13	.02	.03	18.91	35.54	43.35	.07	.03
284	.00	Quartz	99.75	.00	.00	.04	.00	.00	99.68	.02	.01
285	.00	Quartz	99.59	.01	.00	.04	.00	.00	99.53	.02	.00
286	.67	Quartz	92.61	.07	.01	.29	.54	.16	91.46	.02	.06

287	.00	Quartz	99.43	.00	.00	.00	.03	.03	99.32	.00	.05
288	.02	Opaques	92.35	.03	.04	88.00	.01	.12	.42	.38	3.36
289			31.13	.23	.01	.15	1.66	1.45	27.55	.08	.00
290	.02	Quartz	99.65	.00	.00	.13	.00	.00	99.52	.00	.00
291	.13	Plagioc	99.23	.87	.08	.03	18.34	36.21	43.59	.09	.01
292			13.55	.04	.27	.07	.30	.19	12.55	.11	.03
293	.03	Plagioc	99.23	.03	.30	.12	18.88	36.27	43.54	.02	.07
294			9.42	.45	.00	.47	.56	.07	7.72	.00	.15
295			35.75	.30	.01	.61	.72	11.33	22.68	.09	.00
296			.86	.00	.00	.01	.01	.00	.85	.00	.00
297	.00	Quartz	99.88	.01	.00	.04	.01	.03	99.78	.00	.01
298	.21	Quartz	93.18	.13	.02	.20	.07	.20	92.48	.01	.07
299	.10	Quartz	98.14	.05	.03	.14	.12	.12	97.63	.03	.02
300	.00	Quartz	100.08	.00	.00	.04	.00	.00	100.05	.00	.00
301	.01	Quartz	99.49	.01	.00	.04	.02	.00	99.34	.02	.06
302	.02	Quartz	100.11	.00	.00	.08	.04	.00	99.91	.02	.07
303	.00	Quartz	100.32	.00	.00	.02	.02	.00	100.28	.00	.01
304	.00	Quartz	99.95	.00	.00	.00	.00	.00	99.95	.00	.00
305	.00	Quartz	99.97	.00	.00	.00	.00	.00	99.92	.00	.05
306	.02	Quartz	100.39	.01	.00	.09	.01	.00	100.21	.00	.06
307			7.62	.79	.00	.12	.33	1.09	5.27	.01	.00
308			15.00	.14	.01	.22	.22	.72	13.64	.04	.01
309			2.08	.06	.01	.14	.23	.36	1.26	.02	.00
310	.01	Plagioc	98.90	.14	.15	.01	19.20	35.63	43.65	.06	.06
311	.00	Quartz	101.36	.02	.00	.00	.02	.00	101.32	.00	.01
312	.02	Plagioc	99.02	.27	.01	.00	19.01	35.78	43.84	.11	.00
313			19.98	.32	.02	1.38	1.25	4.13	12.56	.30	.01
314			44.17	.04	.00	.15	.26	17.47	26.15	.01	.08
315			6.51	.00	.01	.05	.00	.10	6.34	.00	.00
316	.01	Quartz	100.85	.01	.00	.07	.00	.00	100.76	.00	.00
317			.40	.00	.00	.02	.02	.02	.32	.01	.01
318	.01	Quartz	100.95	.03	.00	.05	.02	.00	100.81	.04	.01
319	.00	Quartz	101.53	.00	.00	.03	.01	.00	101.46	.00	.03
320	.56	Quartz	98.51	.06	.00	.01	.33	.71	97.31	.07	.01
321	.01	Quartz	101.04	.02	.00	.07	.00	.00	100.92	.03	.00
322	.01	Quartz	101.03	.02	.00	.05	.02	.01	100.88	.00	.06
323	.00	Quartz	100.46	.00	.00	.00	.00	.00	100.45	.00	.01
324			.13	.00	.01	.02	.00	.00	.08	.00	.02

Results of Modal Analysis

InputFile : C:\UserData\Probe Projects FY11\cityhall.dat
OutputFile : C:\UserData\Probe Projects FY11\modal.out
Date and Time: 1/24/2011 7:46:51 PM

Group Name : Sandstone Total Number of Points in File : 324 Valid Number of Points in File : 240 Match Number of Points in File : 237

Minimum Total for Valid Points : 90.00 Percentage of Valid Points : 74.1 Percentage of Match Points : 73.1

Phase	#Match	%Total	%Valid	%Match	AvgVec				
Quartz	190	58.6	79.2	80.2	.09				
	Sum	К2О	Na2O	FeO	CaO	Al203	SiO2	MgO	TiO2
Average:	99.27	.03	.01	.06	.04	.10	98.99	.01	.03
Std Dev:	2.00	.08	.03	.08	.08	.21	2.12	.03	.03
Minimum:	90.60	.00	.00	.00	.00	.00	89.53	.00	.00
Maximum:	102.77	.89	.34	.50	.54	1.52	101.46	.32	.20

Phase	#Match	%Total	%Valid	%Match	AvgVec				
Plagiocl	20	6.2	8.3	8.4	.05				
	Sum	K20	Na2O	FeO	CaO	A1203	SiO2	MgO	TiO2
Average:	99.15	.31	.05	.08	18.73	36.01	43.90	.05	.02
Std Dev:	.78	.34	.07	.10	.47	.28	.40	.03	.02
Minimum:	97.58	.02	.00	.00	17.95	35.54	43.32	.00	.00
Maximum:	100.25	1.31	.30	.39	19.42	36.48	44.88	.11	.07
Phase	#Match	%Total	%Valid	%Match	AvgVec				
Alkali F	21	6.5	8.8	8.9	.06				
	Sum	К2О	Na2O	FeO	CaO	A1203	SiO2	MgO	TiO2
Average:	99.11	13.19	1.83	.07	.22	18.40	65.33	.02	.03
Std Dev:	.61	5.39	4.01	.07	.19	.28	1.50	.03	.04
Minimum:	97.60	.11	.02	.00	.01	18.02	63.91	.00	.00
Maximum:	100.05	15.86	11.65	.32	.71	18.85	69.24	.08	.13
Phase	#Match	%Total	%Valid	%Match	AvgVec				
Opaques	6	1.9	2.5	2.5	.16				
	Sum	К2О	Na2O	FeO	CaO	A1203	SiO2	MgO	TiO2
Average:	91.69	.09	.05	88.86	.18	.39	.94	.43	.75
Std Dev:	1.10	.07	.04	.64	.22	.46	.43	.33	1.31
Minimum:	90.33	.01	.02	88.00	.00	.12	.42	.22	.03
Maximum:	93.13	.18	.11	89.56	.59	1.29	1.38	1.09	3.36

Click the **Close** button on the **Modal Analysis** window.

Finish by exiting STANDARD.

(This page intentionally left blank)

Deadtime Calculations

This section describes how to calibrate the deadtime constants for each spectrometer and where to enter them so that PROBE FOR EPMA will utilize these factors.

Deadtime (τ) is defined as the time interval (after arrival of a pulse) when the counting system does not respond to additional incoming pulses (Reed, 1993). The equation normally used to correct for deadtime losses is given as:

$$n = \frac{n'}{\left(1 - \tau n'\right)} \quad (1)$$

Where:*n* is the deadtime corrected count rate in counts per second

n' is the measured count rate in counts per second

 τ is the deadtime constant in seconds

The time interval when the counting system is dead to additional pulses is defined as $\pi i'$. The live time then, is $(1-\pi i')$. The true count rate (*n*) is proportional to the beam current (*i*) by a constant factor, designated *k*. Thus, equation (1) may be rewritten as:

$$\frac{n'}{i} = k(1 - \tau n')$$
 (2)

A plot of n'/i (cps/nA) versus n' (cps) will yield a straight line with slope of $(-k\tau)$. The intercept on the n'/i axis will be the constant, k, and thus the deadtime factor (τ) may be determined.

A second deadtime correction option is also available in PROBE FOR EPMA. This is a high precision expression for use with very high count rates (Willis, 1993). This expression differs from the normal equation **only** when very high count rates (>50K cps) are achieved. The precision deadtime expression is:

$$n = \frac{n'}{1 - \left(\tau n' + n'^2 \left(\frac{\tau^2}{2}\right)\right)}$$
(3)

The deadtime correction option and type is selected from the **Analysis Calculation Options** window. Click **Analytical | Analysis Options** menu from the main PROBE FOR EPMA log window. Click the **OK** button to confirm the selections.

Quantitative Acquisition Options Image: Use Deadtime Correction Use Normal Deadtime Correction (single term factorial) Use Precision Deadtime Correction (two term factorial for > 50K cps)	OK			
Use Beam Drift Correction Use Automatic Drift Correction on Standard Intensities	Calculation Options Use Aggregate Intensities for Duplicate Quantitative Elements Use Blank Calibration Sample Trace Element Accuracy Corrections Force Negative K-Ratios To Zero in ZAF Calculations			
Use Assigned Interference Corrections on Standards and Unknowns Do Not Use Matrix Correction Term For Full Quant Interference Correction Do Not Use Full Quant Interference Corrections (use traditional Gilfrich, et. al.) Use Assigned or Self Time Dependent Intensity (TDI) Corrections on Unknowns Use Linear Fit (slope coefficient only) for TDI Extrapolation Use Quadratic Fit (two coefficient) for TDI Extrapolation Use Time Weighted Data for TDI Fit (weight intensities based on elasped time) Time Weighted Data Weight Factor Use Assorption Corrected MAN Continuum Intensities Use Particle or Thin Film Correction Parameters Check For Same Peak Positions in Unknown and Standard	Calculate Electron and Xray Ranges for Sample Compositions Use Oxygen From Halogens (F, Cl, Br and I) Correction Use Nth Point Calculation For Off-Peak Intensities (for testing only) Use Count Overwrite Intensity Table for Data Calculations Force Negative Interference Intensities To Zero in Corrections Use Chemical Age Calculation (U, Th, Pb) Formatting Options Use Automatic Format For Quantitative Results © Display the Maximum Number of Numerical Digits			
Check For Same PHA Settings in Unknown and Standard Use Zero Point For Calibration Curve (off-peak elements only) Use Conductive Coating Correction For Beam Energy Loss Use Conductive Coating Correction For X-ray Absorption MAC (mass absorption coefficient) and APF (area peak factor) Options	Use Detailed Printout For Data and Analytical Results Print Analyzed And Specified On Same Line Display Count Intensities Unnormalized To Time (in Analyzel) Output Options Display Charge Balance Calculation			
Use Empirical MAC Values Use Empirical APF Values Use Empirical APF Factors (calculated from elemental composition) Use Specified APF Factors (based on a fixed composition)	Elemental Output Sort Order For JJD-2 and HW Custom Output: © Use Traditional Geological Sort Order (SiO2, TiO2, etc.) © Use Low To High Atomic Number Sort Order © Use High To Low Atomic Number Sort Order			

STARTWIN can be used to obtain the x-ray intensities required for the deadtime calculation. The procedure involves collecting precise beam current and count rate data over a wide range of beam currents. This data set can then be loaded into the supplied Excel template to automatically calculate the deadtime factor for your spectrometers. Paul Carpenter has put together an excellent but slightly more elaborate Excel template, contact Probe Software, Inc. for further details on obtaining his spreadsheet and related documentation.

To calibrate the deadtime factors for your WDS system use high purity, homogeneous metal standards. Depending on the microprobe configuration one standard may be employed to collect data on all spectrometers. Here, a silicon metal standard will be used.

Open the **Count Times** window and disable both the *Use Beam Drift Correction* and the *Normalize To Counts Per Second* options to allow raw intensity data to be collected. Set an *On Peak Count Time* that will give a precise measurement of intensities.

Peak each spectrometer to the x-ray line that will be used (Si K α on the PET and TAP crystals in the JEOL 733). Upon completion of the peak center routine, park the spectrometers on the new peak positions.

Prior to collecting data, run PHA scans on each spectrometer for Si K α , check the pulse height distribution at low and very high beam currents (ideally duplicating the range of beam currents for the deadtime measurements). At very high count rates (large beam currents), significant pulse pileup and gain shifts do occur. Fully open your pulse height windows, optimize your gain settings to see all the signal over the range of beam currents employed.

Data collection and analysis is straightforward. Select **Output | Open Link To Excel** menu from the main STARTWIN log window. Collect three replicate intensity measurements and beam current data. Each time count rate data is acquired, it will automatically be sent to an Excel spreadsheet along with column labels. Measure the replicate count intensities at ten different beam currents; ranging from a few nanoamps to several hundred nanoamps.

Create a count time column, prior to the beam current column in the Excel raw data spreadsheet and enter the relevant count times (in this example 10 seconds was used). The resulting spreadsheet may look similar to the one printed below except you may have data from more than three spectrometers.

Time	Beam	1	2	3
10	3.259	22083	79765	19470
10	3.263	22069	79995	19590
10	3.247	21755	80091	19679
10	7.08	42503	154130	37952
10	7.06	42642	154665	38087
10	7.072	42168	154182	38282
10	14.547	83163	293002	74572
10	14.539	83315	292602	74281
10	14.543	82998	293326	74636
10	29.911	162904	547744	147492
10	29.917	164053	549493	147209
10	29.935	163684	548386	147078
10	50.539	266841	838976	240665
10	50.562	266672	837625	240860
10	50.58	267751	837948	240463
10	80.844	409290	1169741	370608
10	80.856	410142	1169175	370821
10	80.933	409098	1168965	370368
10	103.225	507351	1352944	460976
10	103.229	507971	1354039	460353
10	103.235	508408	1352991	460165
10	153.811	709360	1640458	647802
10	153.828	711086	1640015	647158
10	153.871	710654	1641034	648664
10	199.604	873187	1790253	800511
10	199.545	871582	1788206	799268
10	199.402	873093	1788780	799117
10	248.192	1027320	1878180	945455
10	248.884	1027517	1878519	945061
10	248.947	1026681	1878716	945783

Open the DEADTIME_CALC.XLS file from the floppy disk supplied. Copy and paste count times, beam current information and counts for the first spectrometer into the raw data template starting in cell **A26**.

By placing data into this template, the program will automatically calculate the following items: the average of three replicate time counts, the average of three replicate beam current measurements, the %RSD on the average beam current, the average of three replicate raw intensity measurements and the %RSD on the average raw intensity measurement.

Next, the counts per second (x-axis) and the counts per second per nanoamp (y-axis) are determined. A least squares method is then used to calculate a straight line that best fits your data. The slope and Y-intercept are reported for a straight line fit to all 10 data pairs and also for the last 6. The latter being a more precise determination of deadtime.

28 N	licrosoft Exc	el - DeadTir	ne_Calc.xls								
:	Eile <u>E</u> dit	<u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	<u>H</u> elp Ado <u>b</u>	e PDF				
i 🗋	: 🗋 🚰 🛃 💪 🚑 🖪 🗳 🖏 💞 📖 👗 🍋 🍋 🕶 🏈 🔊 🕶 🖓 🔊 🗸 🖓 🕺 Σ 🗕 🐉 Σ 🖓 🖓 100% 🕘 🚱 🚽 Arial										
1	📴 🐂 🐂 🏹 🇞 🖄 🖾 🏷 🕼 🦓 🖏 🚱 🕅 Reply with Changes – End Review										
-					* Reply wid	<u>o</u> nanges		· 🖵			
) 🛃 🛃 🚽										
	A2	-	<i>f</i> ∗ Tit	le: PET, S	pectromete	er 3, SiKa i	3/11/99				
	A	В	С	D	Е	F	G	Н		J	K
1	Deadtime C	Calculations	;								
2	Title: PET	Spectromet	ter 3, SiKa 3	3/11/99							
3											
4	Time	Beam	%RSD	Counts	STDEV	%RSD	CPS (x)	CPS/nA (y)	DT (usec)	DT (usec)	
5	10.00	3.26	0.26	19580	104.88	0.54	1958	601.28	-55.23		
6	10.00	7.07	0.14	38107	165.91	0.44	3811	538.94	1.77		
7	10.00	14.54	0.03	74496	189.21	0.25	7450	512.25	7.51		
8	10.00	29.92	0.04	147260	211.60	0.14	14726	492.16	6.31		
9	10.00	50.56	0.04	240663	198.51	0.08	24066	475.99	5.10	2.66	
10	10.00	80.88	0.06	370599	226.63	0.06	37060	458.22	4.20	2.67	
11	10.00	103.23	0.00	460498	424.50	0.09	46050	446.09	3.86	2.67	
12	10.00	153.84	0.02	647875	755.63	0.12	64787	421.14	3.46	2.65	
_13	10.00	199.52	0.05	799632	764.97	0.10	79963	400.78	3.27	2.65	
14	10.00	248.67	0.17	945433	361.50	0.04	94543	380.19	3.17	2.67	
15											
16	Least Squar	res Regress	ion for all da	ita points							
17	Slope:	-0.0019					Mean DT		4.29	2.66	
18	Y-intercept:	542.606					STDEV		1.76	0.01	
19	Least Squar	res Regress	ion for last 6) points (moi	e precise)						
20	Slope:	-0.0014									
21	Y-intercept:	508.526					Regressio	n Deadtime	3.44	2.66	
22											
23											

Below is the calculation portion of the Excel template.

🛛 Microsoft Excel - Deadtime_Calc.xls									
: 💌	Eile Edit View Insert Format Tools Data Window Help Adobe PDF								
: •	P3 🛄 🗋		a 🧐 👸		a. 🗸 🍼 🗎	0 - 0 -	🔍 Σ 🔫		
	dia the co						G9 - 1		
1 🔛			Ø D 🔽		Reply with	<u>C</u> hanges	E <u>n</u> d Review		
1									
	A24 ← 夭 Title: PET_Spectrometer 3_3/11/99_SiKa								
	Δ	B			F	F	G		
22						•			
23	Raw Data 1	Femplate							
24	Title: PET,	Spectromet	er 3, 3/11/9	9, SiKa					
25	Time(sec)	Beam(nA)	Counts(cts	5)					
26	10	3.259	19470						
27	10	3.263	19590						
28	10	3.247	19679						
29	10	7.08	37952						
30	10	7.06	38087						
22	10	14 547	38282						
32	10	14.047	74972						
34	10	14.553	74201						
35	10	29.911	147492						
36	10	29.917	147209						
37	10	29.935	147078						
38	10	50.539	240665						
39	10	50.562	240860						
40	10	50.58	240463						
41	10	80.844	370608						
42	10	80.856	370821						
43	10	102 225	3/0368						
45	10	103.223	460353						
46	10	103.225	460165						
47	10	153.811	647802						
48	10	153.828	647158						
49	10	153.871	648664						
50	10	199.604	800511						
51	10	199.545	799268						
52	10	199.402	799117						
53	10	248.192	945455						
55	10	240.004 249.007	945061						
56	10	290.097	543763						
57									
58									

The following screen capture illustrates the raw data template.

Calculate the deadtime factor for each spectrometer in turn, by overwriting the last column of count data in the raw data template portion of the Excel spreadsheet. Simply highlight the data in the Excel linked spreadsheet (from STARTWIN), use the copy function and paste it into the appropriate column. Edit cells A2 and A24 to update the title of the spreadsheet, for documentation and printout purposes. Calculations on the new data set will be automatically updated and output.

The deadtime constants are placed into the SCALARS.DAT file (line 13). Enter a value for each spectrometer (units of microseconds, as output from the Excel spreadsheet).

Deadtime may not be a constant and probably varies with the line energy of the x-ray being measured. One way to get around this is to place a pulse stretching circuit before the counter timer board to ensure that a forced deadtime is used to mask the actual deadtime range of the spectrometer. A pulse width (from the pulse stretcher) greater than the worse case deadtime found for the spectrometer is produced. Using this value will lead to a more accurate deadtime correction at all energies.

(This page intentionally left blank)

Calculation Options

Prior to analyzing collected x-ray data, the user may wish to specify various output calculation options. These choices may be found by clicking the **Calculation Options** button in the **Analyze!** window.

📕 Analyze!												×
Sample Lis	st (multi-sele	ct) (double-cl	ick to see int	ensity data)			Analyze	Data	KRaws	Comb	ine Analysis	s
🔿 Standa	rds Un	5 Gore Mt. G	arnet Standa	rd		Con	nbine Selecte	d Samples	>>Excel	Lines F	From Selecte	ed
🔍 🖲 Unknow	/ns Un	6 93GH16B c	:1-1			Lie	t Benort	Calculation (Intione	S	Samples	
O Waves	cans Un	7 93GH16B c	:1-2				, nopon	ouround ton c	paono			
O All Sam	iples Un	9 93GH16B c	:1-3 :1-4			F	² ause Betweer	n Samples	Benort			
Select	All Un	10 93GH16B	c1-5			ι	Jse All Matrix (Corrections	пероп	Combi	ne Data Line	s
Jelecty		11 93GH16B	c1-6			Del	ata Salactad	Sampla(c)		Fror	m Selected	
Add To S		12 93GH16B 13 93GH16B	CI-7 C1-8			Lind	ele Selecieu d	Sample(s)	Match	c	samples	
Cours Cot		14 93GH16B	c1-1a		-	Onu	elete Selected	sample(s)				
Save Set	ups					Corr	bined Conditi	ons Coun	t Times 📗	Sort S	Stat and Date	
								1		Grids	In Geologica	i le
Specified (Concentration	ns <mark>Standa</mark> r	d Assignmen	its Name	/Descrip	otion	Conditions	Elements	Cations	or Atc	omic Numbe	r
	Mt. Carnot 9	Standard		000	Total O	waen	000	 Total Wei	aht %		Order	
TO = 40 Ke	V = 15 Bea	m = 30 Size	- 1	.000	Calculat	tod Ova	000	7 - Bar	giit /o			
(MaqAnal =	2000.), Mode	e = Analog Sp	oot	.000	Evenee		n 000		oiaht			
X-ray Counts	s (cps/30.43r	iA)		000	LALESS	охуде		Atomic #	ergin			
Copy	mg ka Off	mn ka Off	ca ka Off	al ka Off	fe ka	a Off	ti ka Off	si ka Off	Beam			
Average:	1807.9	20.8	1365.0	5792.0	99	9.3	14.5	2332.6	30.557	,		
Std Dev:	9.4	.2	10.6	9.7	1	.8	.3	11.2	.021			
OneSigma:	6.8	.8	5.9	12.0	5	.0	1.2	10.8				
Std Err:	6.6	.1	7.5	6.9	1	.3	.2	7.9				
%Rel SD:	.52	.86	.78	.17	.1	18	2.36	.48				
Minimum:	1801.3	20.6	1357.5	5785.2	99	8.0	14.3	2324.7	30.542	2		
Maximum:	1814.5	20.9	1372.5	5798.9	100	00.6	14.8	2340.5	30.572	2		
•												►
Delete	e Selected L	ine(s)	Undele	te Selected	l Line(s)		Analyze	Selected Lin	e(s)			
Copy	mg ka Off	mn ka Off	ca ka Off	al ka Off	fe k	a Off	ti ka Off	si ka Off	Beam			
22 G	1814.5	20.9	1372.5	5798.9	100	00.6	14.3	2324.7	30.572	2		-
23 G	1801.3	20.6	1357.5	5785.2	99	8.0	14.8	2340.5	30.542	2		-
												-
•											•	\square
									C	ancel	Next	

The **Calculation Options** window opens.

lculation Options	
Selected Samples	OK Cancel
Un 5 Gore Mt. Garnet Standard	
	EDS Calculation Data
	Do Not Use EDS Element Data
	C Use EDS Spectrum Element Data
	Assign EDS Spectral Elements
	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
	C Do Not Use Integrated Intensities
	C Use Integrated Intensities
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity	Calculate with Stoichiometric Oxygen Calculate as Elemental
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity ✓ Calculate Projected Detection Limits ✓ Calculate Homogeneity Banges	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity ✓ Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference:	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen:	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element:	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To To To
Calculations Options Display Results As Oxides Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To To 1 Oxygen H:O Ratio .00 OH = 1, H2O = 2
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To To 1 Oxygen H:O Ratio .00 OH = 1, H2O = 2
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity □ Calculate Projected Detection Limits □ Calculate Homogeneity Ranges □ Calculate Alternate Homogeneity Ranges □ Calculate Pearson's Linear Correlation Coefficients □ Element By Difference: □ Stoichiometry To Calculated Oxygen: □ Stoichiometry To Another Element: □ Hydrogen Stoichiometry To Excess Oxygen	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To 1 Oxygen H:O Ratio 00 OH = 1, H2O = 2
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen Formula and Mineral Calculations ✓ Calculate Formula Based On 24	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To 1 Oxygen H:O Ratio .00 OH = 1, H2O = 2 Atoms Of OT Add specified oxygen etc. from the Elements/Cations
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen Formula and Mineral Calculations ✓ Calculate Formula Based On 24 Olivine Feldspar	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of To 1 Oxygen H:O Ratio 00 OH = 1, H2O = 2 Atoms Of OH = 1, H2O = 2 Atoms Of OH = 1, H2O = 2

Each of the selected options in the above window will be briefly discussed in conjunction with the data output for the selected sample *Un* 5 *Gore Mt. Garnet Standard*.

5 Gore Mt. Garnet Standard Un TakeOff = 40.0 KiloVolt = 15.0 Beam Current = 30.0 Beam Size = 1 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) Image Shift (X,Y): -2. 3 Std 40 Number of Data Lines: 2 Number of 'Good' Data Lines: 2 First/Last Date-Time: 11/21/1996 10:51:22 AM to 11/21/1996 10:55:35 AM WARNING- Forcing negative k-ratios to zero 42.298 Average Total Weight%: 100.752 Average Total Oxygen: Average Calculated Oxygen: 42.298 Average Atomic Number: 13.652 Average Excess Oxygen: .000 Average Atomic Weight: 22.871 Average ZAF Iteration: 4.00 Average Quant Iterate: 2.00 Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction 5 Gore Mt. Garnet Standard, Results in Elemental Weight Percents Un SPEC: 0 CALC TYPE: 42.298 AVER: .027 SDEV: ELEM: Mg Mn Ca Al Fe Τi Si BGDS: LIN LIN LIN LIN LIN LIN LIN TIME: 40.00 40.00 40.00 40.00 40.00 40.00 20.00 BEAM: 30.56 30.56 30.56 30.56 30.56 30.56 30.56 Ca ELEM: Fe Тi Mq Mn Al Si SUM .418 5.345 11.932 17.024 .065 18.474 100.765 2.2 5.229 23 5.189 .413 5.287 11.896 16.982 .067 18.588 100.740 AVER: 5.209 .415 5.316 11.914 17.003 .066 18.531 100.752 SDEV: .028 .004 .041 .025 .029 .002 .081 .018 .020 .003 .029 .001 .057 SERR: .018 .021 .54 .21 .44 %RSD∶ .85 .76 .17 2.36 40 26 40 40 40 41 40 STDS: .0330 .3086 .0499 .0841 .2898 STKF: .1468 .1370 STCT: 1818.5 1807.9 1356.0 5863.6 993.9 7261.9 2319.7 UNKF: .0328 .0035 .0502 .0831 .1476 .0006 .1377 5792.0 1807.9 20.8 1365.0 999.3 UNCT: 14.5 2332.6 UNBG: 7.3 33.8 59.4 31.0 11.7 46.8 6.3 1.5892 1.1716 1.0580 1.4339 1.1517 1.1330 1.3457 ZCOR: KRAW: .9941 .0115 1.0066 .9878 1.0054 .0020 1.0055 PKBG: 59.27 3.87 41.44 98.54 86.43 1.31 375.63

SPEC: TYPE:	0 CALC								
AVER: SDEV:	.000								
ELEM: 22 23	MgO 8.671 8.605	MnO .539 .533	CaO 7.478 7.398	Al2O3 22.545 22.478	FeO 21.901 21.848	TiO2 .108 .112	SiO2 39.522 39.767	SUM 100.765 100.740	
AVER: SDEV: SERR: %RSD:	8.638 .047 .033 .54	.536 .005 .003 .85	7.438 .057 .040 .76	22.512 .048 .034 .21	21.874 .038 .027 .17	.110 .003 .002 2.36	39.645 .174 .123 .44	100.752 .018	
Un 5	Gore Mt	. Garnet	Standar	d, Resul	lts in Ato	omic Per	rcents		
SPEC: TYPE:	0 CALC								
AVER: SDEV:	60.010 .026								
ELEM: 22 23	Mg 4.884 4.846	Mn .173 .170	Ca 3.027 2.994	Al 10.040 10.007	Fe 6.921 6.902	Ti .031 .032	Si 14.933 15.021	SUM 100.000 100.000	
AVER: SDEV: SERR: %RSD:	4.865 .027 .019 .56	.172 .001 .001 .87	3.011 .024 .017 .78	10.023 .023 .017 .23	6.911 .013 .009 .19	.031 .001 .001 2.34	14.977 .063 .044 .42	100.000	
Un 5	Gore Mt	. Garnet	Standar	d, Resu	lts Based	on 24 2	Atoms of	0	
SPEC: TYPE:	0 CALC								
AVER: SDEV:	24.000								
ELEM: 22 23	Mg 1.954 1.937	Mn .069 .068	Ca 1.211 1.197	Al 4.016 4.001	Fe 2.769 2.759	Ti .012 .013	Si 5.974 6.006	SUM 40.005 39.981	
AVER: SDEV: SERR: %RSD:	1.946 .012 .008 .61	.069 .001 .000 .92	1.204 .010 .007 .83	4.009 .011 .008 .28	2.764 .007 .005 .24	.012 .000 .000 2.30	5.990 .022 .016 .37	39.993 .017	
Garnet N	Mineral 1	End-Membe	er Calcu	lations	(Ca, Mg,	Fe, Mn)		
22 23	Gro 20.2 20.1	Pyr 32.6 32.5	Alm 46.1 46.3	Sp 1.2 1.1					
AVER: SDEV:	20.1 .1	32.5 .0	46.2 .1	1.1 .0					
Detectio	on limit	at 99 %	Confide	nce in D	Elemental	Weight	Percent	(Single	Line):
ELEM:	Ma	Mn	Ca	Al	Fe	Тi	Si		
22	.012	.039	.017	.012	.043	.023	.023		
23	.012	.041	.017	.012	.044	.023	.020		
AVER: SDEV: SERR:	.012 .000 .000	.040 .001 .001	.017 .000 .000	.012 .000 .000	.044 .001 .000	.023 .000 .000	.021 .002 .001		

5 Gore Mt. Garnet Standard, Results in Oxide Weight Percents

Un

Percent	Analytic	al Relat	ive Erro	r (One	Sigma, Si	ingle Lin	e):	
ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si	
22	.4	5.1	.4	.2	.5	14.6	.5	
23	.4	5.3	.4	.2	.5	14.4	.5	
AVER:	. 4	5.2	.4	.2	.5	14.5	.5	
SDEV:	.0	.1	.0	.0	.0	.2	.0	
SERR:	.0	.1	.0	.0	.0	.1	.0	
Range of	Homogen	eity (t-	test) in	+/- El	emental V	Veight Pe	rcent (Average of Sample):
ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si	
60ci	.025	.004	.035	.023	.025	.001	.077	
80ci	.055	.009	.078	.052	.056	.003	.172	
90ci	.113	.019	.159	.107	.114	.007	.353	
95ci	. 228	.038	.321	.214	.230	.014	.710	
99ci	1 142	189	1 607	1 074	1 151	069	3 556	
JJCI	1.172	.105	1.007	1.0/4	1.131	.005	5.550	
Test of	Homogene	ity (t-t	est) at	1.0 % P	recision	(Average	of Sam	ple):
ELEM:	Mq	Mn	Ca	Al	Fe	Ti	Si	
60ci	ves	ves	ves	ves	ves	no	ves	
80ci	no	no	no	Ves	Ves	no	Ves	
90ci	no	no	no	Vec	yes	no	700 no	
OFai	110	110 no	110	yes	esy ro	110 mo	110	
9501	110	110	110	110	110	110	110	
9901	no	no	no	no	no	no	no	
Level of	Homogen	eity (t-	test) in	+/- Pe	rcent (Av	verage of	Sample):
ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si	
60ci	.5	1.0	.7	.2	.1	2.3	.4	
80ci	1.1	2.2	1.5	. 4	. 3	5.1	. 9	
90ci	2 2	4 5	3 0	9	7	10 4	1 9	
95ci	1 1	0 1	5.0	1 0	1 /	21 0	2 0	
00ai	21 0		20.0	1.0	1.1 6 0	105 2	10.2	
9901	21.9	45.5	30.2	9.0	0.0	105.2	19.2	
Detectio	on Limit	(t-test)	in Elem	ental W	eight Per	cent (Av	erage o	f Sample):
ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si	
60ci		.008				.008		
80ci		.017				.018		
90ci		035				037		
95ci		070				075		
99ci		349				374		
JACI		.349				. 574		
Analytic	al Sensi	tivity (t-test)	in Elem	ental Wei	ight Perc	ent (Av	erage of Sample):
ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si	
60ci	.035	.006	.049	.033	.035	.002	.109	
80ci	.078	.013	.110	.073	.079	.005	.243	
90ci	.160	.027	225	.151	.161	.010	499	
95ci	300	052	454	202	205	020	1 004	
9001	1 615	267	2 272	1 510	1 620	.020	5 000	
2201	T.0T0	. 207	4.4/4	T. 019	1.020	.090	5.029	

Range of Ideal Homogeneity (t-test) in +/- Elemental Weight Percent (Average of Sample) (Meisenkothen and Donovan):

ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si
60ci	.026	.017	.031	.034	.116	.002	.118
80ci	.059	.038	.069	.075	.260	.004	.263
90ci	.121	.078	.141	.155	.532	.008	.539
95ci	.243	.157	.285	.311	1.072	.017	1.085
99ci	1.219	.788	1.427	1.560	5.368	.084	5.436

Range of Actual Homogeneity (t-test) in +/- Elemental Weight Percent (Average of Sample) (Meisenkothen and Donovan):

ELEM:	Mg	Mn	Ca	Al	Fe	Ti	Si
60ci	.035	.006	.049	.033	.035	.002	.109
80ci	.078	.013	.110	.073	.079	.005	.243
90ci	.160	.027	.225	.151	.161	.010	.499
95ci	.322	.053	.454	.303	.325	.020	1.004
99ci	1.615	.267	2.272	1.519	1.628	.098	5.029

Calculation Options	
Selected Samples	OK Cancel
Un 5 Gore Mt. Garnet Standard	 EDS Calculation Data Do Not Use EDS Element Data Use EDS Spectrum Element Data Assign EDS Spectral Elements Integrated Intensity Data Options Do Not Use Integrated Intensities Use Integrated Intensities
Element Density Thickness (A) Us c 2.1 200 Image: Construction of the second secon	n Analytical Analysis Options) e Standard menu to specify standard coatings Jse Conductive Coating
Calculations Options ✓ Display Results As Oxides ✓ Calculate Atomic Percents ✓ Calculate Detection Limits and Sensitivity □ Calculate Projected Detection Limits □ Calculate Homogeneity Ranges □ Calculate Alternate Homogeneity Ranges □ Calculate Pearson's Linear Correlation Coefficients	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
 Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen 	Atoms Of To 1 Oxygen Atoms Of To
Formula and Mineral Calculations ✓ Calculate Formula Based On ○ No Mineral End-Member Calculation	Atoms Of • Add specified oxygen, etc. from the Elements/Cations button
 ○ Olivine ○ Feldspar ○ Pyroxene ● Garne □ Amphibole (Ague, Auto Normalization) □ Biotit 	et (Ca,Mg,Fe,Mn) C Garnet (Al,Fe,Cr) e (Brimhall and Ague, Halog Code)

Selecting *Display Results As Oxides* check box permits the user to display the results of an analysis in oxide weight percents based on the cation ratios defined for each element in the **Element/Cations** dialog window. Results are also, always reported in elemental weight percents.

The *Calculate with Stoichiometric Oxygen* button allows the user to calculate oxygen by stoichiometry if oxygen is not an analyzed element in the routine. If oxygen is either measured or calculated by stoichiometry and the *Display Results As Oxides* check box is selected, then the program will automatically calculate and report the actual excess or deficit oxygen in the analysis. This information can be very useful in determining if the selected cation ratios are correct (iron bearing oxides, for example).

All elements to be calculated by stoichiometry, difference or formula basis must be listed in the sample setup. Add these elements using the **Elements/Cations** button. Each must be added as a "not analyzed" element; click any empty row in the element list, type in the element symbol and leave the x-ray line blank. Analyses can also be output as atomic percents if the *Calculate Atomic Percents* check box is marked. This calculation is based on the fraction of the atomic weight of each element and is normalized to a 100% total.

The *Formula and Mineral Calculation* fields at the base of the **Calculation Options** window allow the user to compute formulas based on any number of oxygens for oxide runs or any analyzed or specified element in elemental runs. Further, olivine, feldspar, pyroxene, and two garnet end-member calculations are written into the software. These formula calculations are based only on atomic weight and do not consider charge balance and site occupancy. See the appendix sections in *An introduction to The Rock-Forming Minerals* by Deer, Howie, and Zussman (1992) for details on calculating formulas for hydrous phases.

The user may also select the *Calculate Detection Limits and Homogeneity* check box. The calculation of the sample detection limits is based on the standard counts, the unknown background counts, and includes the magnitude of the ZAF correction factor. The calculation is adapted from Scott et al., (1995). This detection limit calculation is useful in that it can be used even on inhomogenous samples and can be quoted as the detection limit in weight percent for a single analysis line with a confidence of 99% (assuming 3 standard deviations).

$$C_{\rm MDL} = (\rm ZAF) \frac{3\sqrt{I_{\rm B}/t}}{I_{\rm S}} \cdot 100$$

Where:

ZAF is the ZAF correction factor for the sample matrix

 I_S is the count rate on the analytical (pure element) standard

 I_B is the background count rate on the unknown sample

t is the counting time on the unknown sample

After this, a rigorous calculation of the analytical error also for single analysis lines, is performed based on the peak and background count rates (Scott et al., 1995). The results of the calculation are displayed after multiplication by a factor of 100 to give a percent analytical error of the net

count rate. This analytical error result can be compared to the percent relative standard deviation (%RSD) displayed in the analytical calculation. The analytical error calculation is as follows:

$$\varepsilon_{P-B} = \sqrt{\frac{N_p}{t_p^2} + \frac{N_B}{t_B^2}} / \left(\frac{N_p}{t_p} - \frac{N_B}{t_B}\right)$$

Where:

 N_P

is the total peak counts

 $N_{\scriptscriptstyle B}$ is the total background counts

 t_P is the peak count time

 $t_{\scriptscriptstyle B}$ is the background count time

A more comprehensive set of calculations for analytical statistics will also be performed. These statistics are based on equations adapted from *Scanning Electron Microscopy and X-Ray Microanalysis, Second Edition* by Goldstein, et al., (1992). All calculations are expressed for various confidence intervals from 60 to 99% confidence.

The calculations are based on the number of data points acquired in the sample and the measured standard deviation for each element. This is important because although x-ray counts theoretically have a standard deviation equal to square root of the mean, the actual standard deviation is usually larger due to variability of instrument drift, x-ray focusing errors, and x-ray production. The statistical calculations include:

The range of homogeneity in plus or minus weight percent.

$$\mathbf{W}_{1-\alpha} = \pm \mathbf{C} \left(\frac{\mathbf{t}_{n-1}^{1-\alpha}}{n^{1/2}} \right) \frac{\mathbf{S}_{c}}{\overline{\mathbf{N}}}$$

The level of homogeneity in plus or minus percent of the concentration.

$$\pm \frac{W_{1-\alpha}}{C} = \pm \frac{(t_{n-1}^{1-\alpha})S_{C}(100)}{n^{1/2}\overline{N}}$$

The trace elementdetection limit in weight percent.

$$C_{DL} = \frac{C_{S}}{\overline{N}_{S} - \overline{N}_{SB}} \frac{2^{1/2} (t_{n-1}^{1-\alpha}) S_{C}}{n^{1/2}}$$

The analytical sensitivity in weight percent.

C'

$$\Delta C = C - C' \ge \frac{2^{1/2} C(t_{n-1}^{1-\alpha}) S_C}{n^{1/2} (\overline{N} - \overline{N}_B)}$$

Where:

is the concentration to be compared with

C is the actual concentration in weight percent of the sample

Cs	is the actual concentration in weight percent of the standard
$t_{n-1}^{1-\alpha}$	is the Student t for a 1- α confidence and n-1 degrees of freedom
n	is the number of data points acquired
S _C	is the standard deviation of the measured values
\overline{N}	is the average number of counts on the unknown
\overline{N}_{B}	is the continuum background counts on the unknown
\overline{N}_{S}	is the average number of counts on the standard
\overline{N}_{SB}	is the continuum background counts on the standard
eity test	compares the 99% confidence range of homogeneity value with 1

The homogeneity test compares the 99% confidence range of homogeneity value with 1% of the sample concentration for each element. If the range of homogeneity is less than 1% of the sample concentration then the sample may be considered to be homogenous within 1%. The detection limit calculation here is intended only for use with homogenous samples since the calculation includes the actual standard deviation of the measured counts. This detection limit can, however, be quoted for the sample average and of course will improve as the number of data points acquired increases. Note that the homogenous sample detection limit calculation are ignored for those elements which occur as minor or major concentrations (>1%).

Conversely, the analytical sensitivity calculation is ignored for elements whose concentrations are present at less than 1%.

Three other calculation options are available to the user; *Element By Difference, Stoichiometry To Calculated Oxygen,* and *Stoichiometry To Another Element.*

When the *Element By Difference* check box is selected, the user can include an element in the analysis to account for their affect on the other x-ray intensities. This element must be specified in the sample setup. Note this method causes the calculation to result in a 100% total.

The *Stoichiometry To Calculated Oxygen* option is often used in the analysis of carbonate or borate samples in an oxide run. This feature permits the user to analyze just the cations in the sample and have oxygen calculated by stoichiometry and another specified element (usually C in carbonates and B in borates) calculated relative to oxygen. In the carbonate scenario (CaCO₃), carbon is always in the ratio of 1 to 3 to oxygen. If the user specifies carbon by stoichiometry relative to the stoichiometric element oxygen at 0.333 (1 divided by 3) the correct amount of both carbon and oxygen will be incorporated into the ZAF matrix correction and totals without analyzing for either element. This method should only be used with phases where the ratio to oxygen is both fixed and known.

Selected Samples Un 4 Siderite Standard	OK Cancel
	EDS Calculation Data
	Do Not Use EDS Element Data
	O Use EDS Spectrum Element Data
	Assign EDS Spectral Elements
	Integrated Intensity Data Options
	O Do Not Use Integrated Intensities
	C Use Integrated Intensities
Element Density Thickness (A) c 2.1 200	se Standard menu to specify standard coatings Use Conductive Coating
Calculations Options Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides Image: Display Results As Oxides	Calculate with Stoichiometric Oxygen Calculate as Elemental
Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficients	Use Particle/Film Calculations
Element By Difference:	•
Stoichiometry To Calculated Oxygen: 0.333	Atoms Of 🔽 🔽 To 1 Oxygen
Stoichiometry To Another Element:	Atoms Of To To
Hydrogen Stoichiometry To Excess Oxygen	H:O Ratio .00 OH = 1, H2O = 2
Formula and Mineral Calculations	
Calculate Formula Based On	Add specified oxygen,
No Mineral End-Member Calculation	Atoms Of 1941 etc. itom the Elements/Cations
15 HO MILETAL LITA MELIDEL CALCULATON	Dutton
O Olivine O Feldspar O Pyroxene O Garr	ret (Ca,Mg,Fe,Mn) O Garnet (Al,Fe,Cr)

The following iron carbonate mineral (siderite) output illustrates oxygen calculated by cation stoichiometry with the element carbon is calculated at 0.333 atoms relative to 1.0 atom of oxygen.

Un 4 Siderite Standard TakeOff = 40.0 KiloVolt = 15.0 Beam Current = 15.0 Beam Size = 10 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) Image Shift (X,Y): -2. 3 Number of Data Lines: 3 Number of 'Good' Data Lines: 3 First/Last Date-Time: 07/26/1999 02:45:52 PM to 07/26/1999 02:51:12 PM WARNING- Forcing negative k-ratios to zero Average Total Oxygen: 41.449 Average Total Weight%: 100.042 Average Calculated Oxygen: 41.449 Average Atomic Number: 16.438 Average Excess Oxygen: .000 Average Atomic Weight: 23.164 Average ZAF Iteration: 8.00 Average Quant Iterate: 2.00 Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction Element C is Calculated .333 Atoms Relative To 1.0 Atom of Oxygen 4 Siderite Standard, Results in Elemental Weight Percents Un SPEC: С 0 TYPE: STOT CALC AVER: 10.356 41.449 SDEV: .017 .013 ELEM: Ca Mg Mn Fe BGDS: LIN LIN LIN LIN 30.00 20.00 40.00 TIME: 40.00 BEAM: 10.34 10.34 10.34 10.34 ELEM: Ca Mg Mn Fe SUM 19 .000 .067 2.235 45.825 99.929 20 .014 .072 2.375 46.005 100.264 21 .013 .077 2.323 45.708 99.933 AVER: .009 .072 2.311 45.846 100.042 .008 .071 SDEV: .005 .150 .192 SERR: .004 .003 .041 .086 %RSD: 86.77 6.95 3.06 .33 STDS: 130 131 132 132 .3826 .0853 .0202 STKF: .4131 3040.8 1502.9 43.1 955.3 STCT: .0205 UNKF: .0001 .0003 .4124 UNCT: .2 6.1 43.6 953.6 UNBG: 11.0 11.0 3.0 5.6 ZCOR: .9873 2.0734 1.1296 1.1117 KRAW: .0001 .0041 1.0111 .9982 16.50 172.56 1.03 1.55 PKBG: 4 Siderite Standard, Results in Oxide Weight Percents IJn SPEC: CO2 0 CALC TYPE: STOI AVER: 37.946 .000 SDEV: .062 .000 ELEM: CaO MgO MnO FeO SUM 19 .000 2.886 58.954 99.929 .111 20 .019 .119 3.066 59.185 100.264 21 .018 .128 3.000 58.803 99.933

AVER:	.012	.119	2.984	58.981	100.042
SDEV:	.011	.008	.091	.192	.192
SERR:	.006	.005	.053	.111	
%RSD:	86.77	6.95	3.06	.33	

Another interesting example demonstrating this feature is nicely documented in the User's Guide and Reference documentation (see Stoichiometry to Oxygen section). There, several trace metals are analyzed for in a stoichiometric Al_2O_3 matrix without measuring aluminum or oxygen, BUT the correct amount of Al_2O_3 is added to the matrix correction!

The *Stoichiometry To Another Element* option gives the user another recalculation method similar to the *Stoichiometry To Calculated Oxygen* option just discussed. Here, the user may select any other analyzed or specified element as the stoichiometric basis element.

The example below calculates CO_2 on the basis of moles of CaO, rather than by stoichiometry to oxygen.

The setup is shown in the **Calculation Options** window below.

Selected Samples	OK Cancel
	-EDS Calculation Data
	Do Not Lice EDS Element Data
	 Use EDS Spectrum Element Data
	Assign EDS Spectral Elements
	Integrated Intensity Data Options
	C Do Not Use Integrated Intensities
	C Use Integrated Intensities
Sample Conductive Coating (need to evolicity turn of	n in Analytical Analysis Ontions)
	Use Standard menu to specify standard coatings
Element Density Thickness (A)	Use Conductive Costing
	Ose conductive coating
Calculations Options	
Display Results As Ovides	
Coloulate Atomic Descents	Calculate with Stoichiometric Oxygen
Calculate Atomic Percents	Calculate with Stoichiometric Oxygen Calculate as Elemental
Calculate Atomic Percents	Calculate with Stoichiometric Oxygen Calculate as Elemental
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculate Atomic Percents	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity C Calculate Projected Detection Limits C Calculate Homogeneity Ranges C Calculate Alternate Homogeneity Ranges C Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen:	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
 Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: 2 	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations
 Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: Hydrogen Stoichiometry To Excess Oxygen 	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of C To Ca To H:O Ratio 00 OH = 1, H2O = 2
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: 2 Hydrogen Stoichiometry To Excess Oxygen	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of c To Ca To H:O Ratio 00 OH = 1, H2O = 2
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: ✓ Stoichiometry To Another Element: 2 Hydrogen Stoichiometry To Excess Oxygen	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of To 1 Oxygen Atoms Of C To 1 Oxygen H:O Ratio 00 OH = 1, H2O = 2
 Calculate Atomic Percents Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: Y Stoichiometry To Another Element: P Hydrogen Stoichiometry To Excess Oxygen Formula and Mineral Calculations Calculate Formula Based On 	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Atoms Of Atoms Of H:O Ratio .00 OH = 1, H2O = 2
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: Stoichiometry To Another Element: 2 Hydrogen Stoichiometry To Excess Oxygen Formula and Mineral Calculations Calculate Formula Based On No Mineral End-Member Calculation	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Is Atoms Of Atoms Of Image: Comparison of the state of t
Calculate Atomic Percents C Calculate Detection Limits and Sensitivity Calculate Projected Detection Limits Calculate Homogeneity Ranges Calculate Homogeneity Ranges Calculate Alternate Homogeneity Ranges Calculate Pearson's Linear Correlation Coefficient Element By Difference: Stoichiometry To Calculated Oxygen: ✓ Stoichiometry To Another Element: 2 Hydrogen Stoichiometry To Excess Oxygen Formula and Mineral Calculations No Mineral End-Member Calculation Olivine Feldspar	Calculate with Stoichiometric Oxygen Calculate as Elemental Use Particle/Film Calculations Use Particle/Film Calculations ts Atoms Of To 1 Oxygen Atoms Of C To 1 Oxygen To Ca To H:O Ratio 00 OH = 1, H2O = 2 Atoms Of Sum Add specified oxygen, etc. from the Elements/Cations button met (Ca,Mg,Fe,Mn) C Garnet (AI,Fe,Cr)

The resulting carbonate output is seen next.

Un 3 Dolomite Standard TakeOff = 40.0 KiloVolt = 15.0 Beam Current = 15.0 Beam Size = 10 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) Image Shift (X,Y): -2, 3 Number of Data Lines: 3 Number of 'Good' Data Lines: 3 First/Last Date-Time: 07/26/1999 02:36:45 PM to 07/26/1999 02:42:40 PM WARNING- Forcing negative k-ratios to zero

Average	Total Oxygen:	52.237	Average Total Weight%:	100.376
Average	Calculated Oxygen:	52.237	Average Atomic Number:	10.882
Average	Excess Oxygen:	.000	Average Atomic Weight:	18.446
Average	ZAF Iteration:	3.00	Average Quant Iterate:	2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction Element C is Calculated $\ 2$ Atoms Relative To 1.0 Atom of Ca

Un 3 Dolomite Standard, Results in Elemental Weight Percents

SPEC: TYPE:	C RELA	0 CALC				
AVER: SDEV:	13.070 .042	52.237 .111				
ELEM: BGDS: TIME: BEAM:	Ca LIN 20.00 10.34	Mg LIN 30.00 10.34	Mn LIN 40.00 10.34	Fe LIN 40.00 10.34		
ELEM: 16 17 18	Ca 21.744 21.881 21.793	Mg 13.226 13.159 13.246	Mn .044 .023 .000	Fe .033 .030 .028	SUM 100.210 100.560 100.356	
AVER: SDEV: SERR: %RSD: STDS:	21.806 .069 .040 .32 130	13.210 .045 .026 .34 131	.022 .022 .013 98.33 132	.030 .003 .002 8.66 132	100.376 .176	
STKF: STCT:	.3826 3040.8	.0853 1502.9	.0202 43.1	.4131 955.3		
UNKF: UNCT: UNBG:	.2045 1625.7 8.6	.0847 1492.4 9.0	.0002 .3 2.1	.0003 .6 3.4		
ZCOR: KRAW: PKBG:	1.0661 .5346 189.50	1.5597 .9930 167.57	1.2224 .0070 1.19	1.2016 .0006 1.18		
Un 3	Dolomit	e Standa	rd, Resu	lts in (Oxide Weight	Percents
SPEC: TYPE:	CO2 RELA	0 CALC				
AVER: SDEV:	47.890 .152	.000				
ELEM: 16 17 18	CaO 30.425 30.616 30.493	MgO 21.932 21.822 21.966	MnO .056 .030 .000	FeO .043 .038 .036	SUM 100.210 100.560 100.356	
AVER: SDEV: SERR: %RSD:	30.511 .097 .056 .32	21.907 .075 .043 .34	.029 .028 .016 98.33	.039 .003 .002 8.66	100.376 .176	

(This page intentionally left blank)
Linear Calibration - Curve Method

PROBE FOR EPMA offers a sophisticated calibration curve (multi-standard) method for correcting x-ray data. It is based on a second order polynomial fit to multiple standard intensity data. This option has been utilized in special situations such as the analysis of trace carbon in steels and when a suitable set of well characterized standards are available.

The example outlined below will document this calibration curve method for the specific analysis of Al, Ti and O in titanium aluminides doped with oxygen. This data and mdb file was generously supplied from research conducted by Jim Smith at the NASA Glenn Research Center. These low density, high strength alloys are part of an ongoing study of the transport kinetics of oxygen in these metals in conjunction with the development of superior alloys for aircraft engine gas turbine turn blades.

A series of nine titanium-aluminides (varying Ti/Al ratio) were carefully prepared, each doped with a specific concentration of oxygen, ranging from 0 to 3.21%, thereby bracketing the expected unknowns range of oxygen concentration. Each standard alloy was analyzed by other techniques to verify the nominal compositions. The nine standard compositions were then entered into the STANDARD.MDB database and the positions of each standard digitized in PROBE FOR EPMA.

Aluminum, titanium and oxygen were peaked on the appropriate standards and count rate data (five spots each) were acquired on each of the nine standards. The count rate data was then examined in the **Analyze!** window to ascertain the precision of the five data points on each standard, deleting any selected lines as deemed appropriate.

After standard collection, the user must select the calibration curve approach as the matrix correction method. From the main PROBE FOR EPMA log window, select **Analytical** | **ZAF Selections** from the menu.

Probe for EPMA [C:\User	Data\Probe Projects FY11\TiAlO-8.MDB]		<u> </u>
File Edit Standard Xray	Analytical Window Run Output Help		
Acquir	Analysis Options	Plot!	
Probe Data File: C: James Smith Oxygen Titanium-Alu TiAL standards ana]	Assign MAN Fits Clear All MAN Assignments (use default) Use Off Peak Elements For MAN Fit (Use on-peak intensities from elements acquiring using off-peak backgrounds) Use MAN Correction For Off Peak Elements (Calculate MAN backgrounds for elements acquired using off-peak backgrounds)		
Reading Current Sam	Empirical MACs Empirical APFs		
Probe for EPMA Ente Database File: C:\U Database File Type DataFile Version Nu	ZAF Selections Create Virtual Standard Intensity Update Dead Time Constants		
Program Version Num Database File User Database File Descr	Students "" Table CakZAF Cakulatons jption: TiAL standards analysis/calibration curve method		
Database Created: 1 Last Updated: 11/15 Last Modified: 1/11 Current Date and Ti Mominal Beam: 300.1 Faraday/Absorbed Av Correction Method at Calibration Curve (CITZMU Heinrich ()	1/15/2000 3:49:36 PM /2000 3:49:36 PM /2011 7:12:19 PM me: 1/11/2011 7:13:16 PM 81 (nA) erages: 10 nd Mass Absorption Coefficient File: multi-standard) 1966) and Henke and Ebisu (1974)	Cancel	Dung
Open: Ready		Cancel	Pause //
			111

The **Matrix Correction Methods** window opens. Select the *Calibration Curve (multi-standard)* button for the *Correction Method*.

Ν	latrix Correction Methods	
	Correction Method	ОК
	 Constant Alpha Factors (single coefficient) Linear Alpha Factors (double coefficient) Polynomial Alpha Factors (triple coefficient) 	Cancel
	Use Empirical Alpha Factors	Options
	Calibration Curve (multi-standard)	MACs

Click the **OK** button, returning to the main PROBE FOR EPMA log window.

Next, the user will evaluate each of the three calibration curves. Open the **Plot!** window. Select all nine titanium-aluminide alloy standards to plot. Note, the check box for *Force Black and White Print* was selected. If the user wants to output and archive the graphed data, this option causes the printer to create a clean black and white print, without gray background (see discussion below). Select a *Graph Type*. Check the *Average Only* check box to use the average value of each standard sample.

Finally, plot O Elemental Percents versus O On Peak Counts (P+B).

Click the **Output** button.

All of the selected standards are analyzed and reported in the main PROBE FOR EPMA log window.

The Plot Graph Data window appears.

The *Show Grid Lines* check box has been marked to facilitate reading the percent and count values. This calibration curve may be printed out by clicking the **Print** button next to the **OK** button. If the user selects the *Force Black and White Print* check box in the **Plot!** window, then the corresponding output will be a black and white print, if not, then the printer will output the above gray background.

The user may evaluate the data using the **Zoom Full** capabilities (click and drag mouse over region of interest on graph) to expand the scaling. Here, in the center group, two data points clearly overlap. Placing the mouse cursor over any selected point on the graph returns the x and y values of that position (read above the **Zoom Full** button).

When finished, click the **OK** button to return to the **Plot!** window to next review the other calibration curves.

The output for aluminum is plotted similarly. Select the *Al Elemental Percents* versus *Al On Peak Counts* (P+B), (the counts per second determined on peak) and click the **Output** button in the **Plot!** window. This curve is viewed below.

The graph may be modified by selecting any of the buttons across the top to enter the **Graph Control** module.

Graph Control (see tabs in display below) can be used to edit numerous graph parameters. Under the **Trends** tab, for instance, are the curve fitting options. Select *Curve Fit* under *Statistical Lines* and edit the *Curve Fit Type* and *Order* as required.

Graph Control	×
Error Bar Background Legend Style Data Titles Axis 3D Fonts	Labels System About Markers Trends Overlay
Statistical Lines ✓ All Sets Set Number ✓ Mean Min/Max Std Dev Best Fit ✓ Curve Fit	Limit Lines Limit Lines Line Color Fill Color Color Fill Fill Color Fill Color Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill Fill
Curve Fit Type Variable-Order Polynomial Order 2 Granularity Offer Ormeel Application	High Label:

Click the **Apply Now** or **OK** button to see the changes in the **Graph Data** window.

The modified **Plot Graph Data** window returns. Here, a title, different, larger symbols, standard numbers and the second order polynomial curve have been added to the graph below.

Upon creating the previous plots, the selected standards were analyzed, each of the nine standards were reported in the main PROBE FOR EPMA log window along with the second order polynomial fit parameters.

The following output displays the log window output for one of these: St 617 Set 5 TiAl-7 standard.

St 617 Set 5 TiAl-7 TakeOff = 52.5 KiloVolt = 15.0 Beam Current = 30.0 Beam Size = 1 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) Image Shift (X,Y): -2, 3 Image Shift (X,Y): Titanium aluminide 3.03 Oxygen Number of 'Good' Data Lines: 5 Number of Data Lines: 5 First/Last Date-Time: 12/11/2000 04:03:01 PM to 12/11/2000 04:06:28 PM WARNING- Using Calibration Curve Matrix Corrections WARNING- Forcing negative k-ratios to zero .000 Average Total Weight%: 100.651 .000 Average Atomic Number: 20.177 Average Total Oxygen: Average Calculated Oxygen: Average Excess Oxygen: .000 Average Atomic Weight: 40.571 St 617 Set 5 TiAl-7, Results in Elemental Weight Percents ELEM: Al Ti 0 LIN LIN LIN BGDS: TIME: 10.00 10.00 10.00 BEAM: 300.00 300.00 300.00 Al Ti ELEM: 0 SUM 978 15.452 81.618 2.986 100.056 97915.68081.9663.114100.76198015.86481.8803.053100.79698115.78881.9573.000100.744 982 15.747 82.245 2.908 100.900 AVER: 15.706 81.933 3.012 100.651 SDEV: .157 .224 .077 .338 .100 .070 .035 SERR: %RSD∶ 1.00 2.56 PUBL: 15.730 81.240 3.030 100.000 %VAR: -.15 .85 -.59 -.018 DIFF: -.024 .693 UNCT: 13020.8 11807.2 329.4 UNBG: 215.5 29.2 116.0 KRAW: 1.0000 1.0000 1.0000 PKBG: 61.44 406.68 3.84 .4671-363.4302 -.5152 FTT1: FIT2: .0013 .0712 .0098 FIT3: .000000-.000003 .000003 2.2 DEV: .9 7.1

The coefficients for the second order polynomial are listed last (Fit 1, Fit 2, Fit 3 and Dev). The three Fit terms represent the intercept, the slope and the second order curvature factor, respectively. The DEV term represents the total deviation (sum of the residuals) between the calculated curve and the original data. The smaller the number, the better here. The software prints a warning line if this correction method is active.

The analysis of unknown samples is straightforward. Create a new sample and collect the x-ray intensity data on the unknown. Select the **Analyze!** window and click **Analyze**.

An example is printed next.

Un 25 TakeOf: (Magni: (Magni: Image 2 Number First/I WARNING WARNING Average	5 Sample f = 52.5 fication fication Shift (X of Data Last Data G- Using G- Forcin e Total (3-9 LowO KiloVol (analyti (default ,Y): Lines: e-Time: 1 Calibrat ng negati Dxygen: ated 0xyg	x 0-30u t = 15.(cal) =) = 16 2/11/200 ion Curv ve k-rat	2u incre D Beam (2000), 0, Ma 1 00 01:27 7e Matriz tios to 2 .000	agnifica Jumber o 41 PM t Correc zero Average Average	= 30.0 Beam Mod tion (in f 'Good o 12/11, tions Total W Atomic	Beam Size de = Analo maging) = -2 ' Data Lin /2000 01:4 Weight%: Number:	= 1 g Spot 40) , 3 es: 16 0:41 PM 99.869 19.838	
Average	e Excess	Oxygen:		.000	Average	Atomic	Weight:	39.903	
Un 2!	5 Sample	3-9 Low0	x 0-30u	2u incre	ements,	Results	in Elemen	tal Weigh	nt Percents
ELEM:	Al	Ti	0						
BGDS:	LIN	LIN	LIN						
TIME:	10.00	10.00	10.00						
BEAM:	300.24	300.24	300.24						
ELEM:	Al	Ti	0	SUM					
851	21.260	76.350	1.956	99.566					
852	21.236	76.469	2.003	99.708					
853	21.193	76.689	1.957	99.839					
854	21.128	76.174	1.941	99.244					
855	21.222	76.599	1.842	99.663					
856	21.120	76.425	1.755	99.300					
857	21.126	76.494	1.838	99.459					
858	21.125	77.135	1.767	100.027					
859	21 142	76 686	1 791	99 619					
860	21.112	76.000	1 706	00 701					
061	21.133	70.035	1 702	100 000					
861	21.139	77.248	1.703	100.089					
862	21.256	77.439	1.685	100.379					
863	21.190	77.360	1.833	100.383					
864	21.216	77.503	1.779	100.499					
865	21.286	77.127	1.643	100.055					
866	21.264	77.541	1.482	100.287					
AVER:	21.191	76.880	1.798	99.869					
SDEV:	.058	.454	.133	.393					
SERR:	.015	.113	.033						
%RSD:	.28	.59	7.42						
UNCT:	18339.0	11021.6	222.4						
UNBG:	218.2	26.6	113.8						
KRAW:	1.0000	1.0000	1.0000						
PKBG:	85.05	417.09	2.96						
FIT1:	.4718	-363.4019	5153	2					
FTT2:	.0013	0712	0098	-					
FTT3:	. 000000	- 000003	.000003						
DEV:	2.2		7.1						

The second order polynomial coefficients are always listed last (just above). Elements calculated by difference or stoichiometry can be calculated along with calibration curve corrected elements. And if both off-peak and MAN acquired data are present, PROBE FOR EPMA will construct separate sets of calibration curves and fit a second order polynomial expression that is used in the iteration procedure to determine the concentration of the element.

The user may elect to run standards after completing unknown sample acquisition and then correct for any standard intensity drift. From the main PROBE FOR EPMA log window select **Analytical** and then choose **Analysis Options** from the drop-down menu.

The Analysis Calculation Options window appears, remember to check that the *Use Automatic Drift Correction on Standard Intensities* check box is marked.

Analysis Calculation Options	
Quantitative Acquisition Options Image: Second Se	OK
 ✓ Use Beam Drift Correction ✓ Use Automatic Drift Correction on Standard Intensities 	Calculation Options
Quantitative Analysis Options Use Assigned Interference Corrections on Standards and Unknowns Do Not Use Matrix Correction Term For Full Quant Interference Correction Do Not Use Full Quant Interference Corrections (use traditional Gilfrich, et. al.) Use Assigned or Sell Time Dependent Intensity (TDI) Corrections on Unknowns Use Linear Fit (slope coefficient only) for TDI Extrapolation Use Quadratic Fit (wo coefficient) for TDI Extrapolation Use Time Weighted Data for TDI Fit (weight intensities based on elasped time) Time Weighted Data Weight Factor	 □ Use Blank Calibration Sample Trace Element Accuracy Corrections ♥ Force Negative K-Ratios To Zero in ZAF Calculations □ Calculate Electron and Xray Ranges for Sample Compositions □ Use Oxygen From Halogens (F, Cl, Br and I) Correction □ Use Nth Point Calculation For Off-Peak Intensities (for testing only) □ Use Count Overwrite Intensity Table for Data Calculations □ Force Negative Interference Intensities To Zero in Corrections □ Use Chemical Age Calculation (U, Th, Pb)
 Use Absorption Corrected MAN Continuum Intensities Use Particle or Thin Film Correction Parameters Check For Same Peak Positions in Unknown and Standard Check For Same PHA Settings in Unknown and Standard Use Zero Point For Calibration Curve (off-peak elements only) Use Conductive Coating Correction For Beam Energy Loss Use Conductive Coating Correction For X-ray Absorption 	 Use Automatic Format For Quantitative Results Display the Maximum Number of Numerical Digits Display Only Statistically Significant Number of Numerical Digits Use Detailed Printout For Data and Analytical Results Print Analyzed And Specified On Same Line Display Count Intensities Unnormalized To Time (in Analyze!)
MAC (mass absorption coefficient) and APF (area peak factor) Options Use Empirical MAC Values Use Empirical APF Values Use Empirical APF Factors (calculated from elemental composition) Use Specified APF Factors (based on a fixed composition)	 Display Charge Balance Calculation Elemental Output Sort Order For JJD-2 and HW Custom Output: © Use Traditional Geological Sort Order (SiO2, TiO2, etc.) © Use Low To High Atomic Number Sort Order © Use High To Low Atomic Number Sort Order

In some instances, it may be useful to add to the acquired data set a zero point (off-peak elements only) to improve the polynomial fit. To include a zero point, check the box (prior to analyzing the standards) labeled *Use Zero Point For Calibration Curve (Off-Peak Elements Only)*. This choice is also found in the **Analysis Calculation Options** window.

(This page intentionally left blank)

Time Dependent Intensity (TDI) Corrections

PROBE FOR EPMA gives the user two powerful methods for the correction of time dependent intensity element effects unknown samples. Each correction option provides a means to automatically correct data for the time dependent loss of x-ray intensity due to continuous electron bombardment (heating damage/charge buildup) or carbon contamination that occurs during normal electron microprobe work. The time dependent intensity element extrapolation may be applied to any degradation (or enhancement) of the x-ray intensity over time. Elements most susceptible include sodium, potassium, perhaps sulfur and bound water. This correction is most useful for samples that are too small to utilize a defocused beam and also allows the operator to run higher than normal sample currents to improve analytical sensitivity.

Two different methods are available for volatile element corrections; the *Self Calibration Time Dependent Intensity (TDI) Acquisition* and the *Assigned Calibration Time Dependent Intensity (TDI) Acquisition*. Each will be documented.

In the *Self Calibration Time Dependent Intensity (TDI) Acquisition* method, the program acquires the on-peak count data for the volatile element **during** the normal sample acquisition process for the unknown sample. This method works well when samples to be analyzed have widely differing compositions as the calibration is determined with every sample acquisition.

Open PROBE FOR EPMA, and proceed through the normal calibration and standardization routine. Check suitable standards for accuracy, these should not be volatile or beam sensitive.

Move to your first unknown sample. Open the **New Sample** window from the **Acquire!** window and create a new unknown sample.

📕 Acquire!				
1 2 228.065 129.262 19	3 X 91.143 8.00024 29.999	Y Z W 33 11.0996 4.00000		Progress/Beam Deflection
1-PET 2-TAP 4.00 4.00 60. 59.	3-LIF Fa 8.00 209.	raday 1.00 999.98		Ð
Current Sample: Un 3 Normal Acquisition Unkn Data Rows: 0	* Glass V-1-1 own Good Data Rows: 0	Start Standard	or Unknown Acquisition rt Wavescan	3.87630 27.9220 um .000000 .000000 px 0 0
Ne w Sample	РНА	Move	Stage	Magnification 400 Beam Mode Applog Spot
Elements/Cations	Peak/Scan Options	Acquisition Options	Imaging	Kilovolts 15
Analytical Conditions	Count Times	Special Options	Peaking Options	Beam Current 20 Beam Size 30
Combined Conditions	Locate	Rate Meter	Start Peaking	Acquire String

Click the **Special Options** button in the **Acquire!** window.

The **Volatile Calibration and Quick Wavescan Samples** window opens. Select the *Self Calibration Time Dependent Intensity (TDI) Acquisition* option. The time dependent intensity element correction is only applied to the first element analyzed for on each spectrometer. Enter a number into the *Volatile Count Time Intervals* text field (up to 50 intervals may be used). The program will use this interval number and the on-peak count time to create a calibration curve. In this example, Na is counted for 40 seconds on peak and with an interval of 10 entered, the program will automatically count ten 4 second intervals. Each element listed first on each spectrometer is treated in this way. The off peak counts are not affected.

Volatile Calibration and Quick Wavescan Samples	
Special Sample Acquisition Options	
C Normal Acquisition	ОК
Acquire a normal standard, unknown or wavescan sample.	
	Cancel
Self Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample that Consider using	
uses a calibration curve based on itself. The TDI assignment synchronous will be made automatically. This method will append a new spectrometer	Seturs
analysis line for each acquisition on an existing unknown acquisition for TDI	
sample. to minimize beam exposure before	
Note: time dependent intensity (TDI) elements must be the starting count first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog.	
Time Dependent Intensity (TDI) Count Time Intervals	
Acquire TDI Data on Standard Samples	
Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyze! window. This method will create a new time dependent intensity calibration sample for each acquisition.	
Time Dependent Intensity (TDI) Sample Name	
Glass V-1-1 Time Dependent Intensity (TDI) Assigned Calibration	
Time Dependent Intensity (TDI) Count Time Intervals	
Stage X Increment (um)	
Stage Y Increment (um)	
Quick Wavescan Acquisition Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition.	
Quick Wavescan Sample Name	
Glass V-1-1 Quick Wavescan	
Quick Scan Speed % (.001 - 100) 10	
Use ROM Based Spectrometer Scan	

Click the **OK** button to return to the **Acquire!** window.

Click the **Start Standard or Unknown Acquisition** button to initiate count data collection on the unknown sample.

📕 Acquire!						
1 2 228.065 129.262 19	3 X 1.143 8.00024 29.999	¥ 3 11.0	z w 996 4.00000		Progress/Bea	m Deflection
1-PET 2-TAP 4.00 4.00 60. 59. Current Sample: Un 3 Self Time Dependent Inte Data Rows: 0	3-LIF Fa 8.00 209. 209. 19 * Glass V-1-1 ensity (TDI) Correction Good Data Rows: 0	raday 1.00 99.98	Start Standard	or Unknown Acquisition t Wavescan	⊕ 3.87630 um .000000	27.9220 .000000
New Sample	PHA		Move	Stage	, . Magnification Beam Mode	400 Analog Spot
Analytical Conditions	Count Times	Sp	visition Options	Peaking Options	Kilovolts Beam Current	15 20
Combined Conditions	Locate		Rate Meter	Start Peaking	Beam Size Acquire String	30

After collecting an unknown sample the user may display the volatile correction from the **Analyze!** window.

Nalyze!	
Sample List (multi-select) (double-click to see intensity data)	Analyze Data KRaws Combine Analysis
Standards Un 1 * setup Un 2 Test Calibration—Rhyolite Glass Un 3 Glass V-1-1	Combine Selected Samples >>Excel Lines From Selected List Report Calculation Options Samples
C All Samples	Pause Between Samples Report Use All Matrix Corrections Combine Data Lines
Add To Setup	Delete Selected Sample(s) Undelete Selected Sample(s) Match
Save Setups	Combined Conditions Count Times Sort Stat and Data
Specified Concentrations Standard Assignments Name/Descri	ption Conditions Elements/Cations Grids In Geological or Atomic Number
Total C Calcula Excess	xygen Total Weight % Order ted Oxygen Z - Bar Oxygen Atomic Weight
	• • • • • • • • • • • • • • • • • • •
Delete Selected Line(s) Undelete Selected Line(s)	Analyze Selected Line(s)
Сору	
	▼
	Cancel Next

Click the **Standard Assignments** button.

The Standard and Interference Assignments window opens.

	ss V-1-1					
					Save Elem	ient Setup
					Save Sam	ple Setup
					Add/Remove	e Standards
				R	eload Standar	d Assignments
					Remove TD	l Correction
				1	2 3	4 5 6
Click Eleme	ent Row to Edit	t Standard/Into	erference/Time Analyzed	Dependent In Standard	tensity (TDI) A	ssignments
Click Eleme Channel I	ent Row to Edit Element si	X-Ray	erference/Time Analyzed Yes	Dependent In Standard 128	tensity (TDI) A	Interf-Std 0,0,0,0,0
Click Eleme Channel	ent Row to Edit Element si ti	X-Ray ka ka	erference/Time I Analyzed Yes Yes	Dependent In Standard 128 212	tensity (TDI) A Interf-Ele	ssignments Interf-Std 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel I 2 3	ent Row to Edit Element si ti al	X-Ray ka ka ka	Analyzed Yes Yes Yes Yes	Dependent In Standard 128 212 81	tensity (TDI) A Interf-Ele	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 1 2 3 4	ent Row to Edit Element si ti al fe	X-Ray ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes	Dependent In Standard 128 212 81 128	tensity (TDI) A Interf-Ele	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,
Click Eleme Channel 1 2 3 4	ent Row to Edit Element si ti al fe mn	X-Ray ka ka ka ka ka ka ka	erference/Time I Analyzed Yes Yes Yes Yes Yes Yes	Dependent In Standard 128 212 81 128 220	tensity (TDI) A	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 1 2 3 4 5 5 5	ent Row to Edit Element si ti al fe mn mg	X-Ray ka ka ka ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes Yes Yes	Dependent In Standard 128 212 81 128 220 128	tensity (TDI) A	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 2 3 4 5 5 7	ent Row to Edit Element si ti al fe mn mg ca	X-Ray ka ka ka ka ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Standard 128 212 81 128 220 128 128 128 128 128 128 212	tensity (TDI) A Interf-Ele	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 1 2 3 4 5 5 5 6 7 8	ent Row to Edit Element si ti al fe mn mg ca na	X-Ray ka ka ka ka ka ka ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Dependent In Standard 128 212 81 128 220 128 128 128 81	tensity (TDI) A Interf-Ele	Interf-Std 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

Select the element row (sodium in this example) to view the TDI calibration data.

The **Assignment Properties** window opens and lists all possible TDI element calibration samples.

ssignment Properties		
Enter Standard Assignments for: na ka		ОК
Element X-Ray Assigned (Primary)	Standard	
Use Virtual Standard For Standard Intensity Calculation	(see Analytical menu)	
☐Interference Standard Assignments for Interfered Element:	na ka	
Intf Elem Intf Order Inte	rference Standard	
	•	Remove
	•	Remove
		Remove
4un 5tb	_	Remove
	•	Reliiuve
		×
Time Dependent Intensity (TDI) Calibration Assignment (se TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use Log-Linear (exponential) Fit Use Log-Quadratic (hyper-exponential) Fit	elect unknown sample for calibration) Both "assigned" and "self" calibration Time Deperence of the Acquire window. Both "assigned" and "self" Time Dependent Interview calibrations can be assigned or unassigned her Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned in the Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned to themselves at the time Dependent Intensity (TDI) provide the term of the self" automatically assigned to themselves at the time Dependent Intensity (TDI) corrections are assigned to themselves at the time Dependent Intensity (TDI) provide the termselves at the time Dependent Dependent Intensity (TDI) provide the termse	indent Intensity (TDI) ial Options dialog in nsity (TDI) element e. Assigned Time gned to samples tions. "Self" Time ned to themselves. calibrations are me of acquisition.
	,	
Blank Correction Sample Assignment Un 2 Test Calibration—Rhyolite Glass Un 3 Glass V-1-1	Assign a sample to be used for a "blank" trace The blank sample should be a similar matrix to and should have a zero or known trace of the	element correction. the unknown sample element present.
	Blank Level .000000 Ro	emove Blank Assignment

Highlight the appropriate *Time Dependent Intensity (TDI) Calibration Assignment* sample and click the **Display TDI Fit** button. Two types of fits are possible; Log-Linear or Log -Quadratic.

The **Time Dependent Intensity** (Self) Fit Plot window opens.

The drop in sodium count intensity with time appears to fit an exponential function (Nielson and Sigurdsson, 1981). A plot of the natural log of the intensity data versus time should yield a straight line relationship as seen above.

The extrapolation correction is quantitative in that the correction is based on a self calibration curve acquired during the run. The correction uses the actual elapsed time for all calculations. It is applied during the ZAF or Phi-Rho-Z iteration phase of the analysis to correct for changes in the matrix correction due to the extrapolation correction.

The next example will illustrate the *Assigned Calibration Time Dependent Intensity Acquisition* method. Here, small rhyolitic glass inclusions of similar composition will be analyzed.

Start PROBE FOR EPMA in the normal manner. Go through the calibration and standardization process, then check standards. Save the analysis routine as a sample setup. Next, create a separate sample setup with a subset of elements to which the TDI correction will be assigned, in this example silicon and sodium. Note TDI element calibration corrections can only be applied to elements that are the first element collected by each spectrometer.

Locate the sample to obtain the TDI element correction acquisition upon. This should be either the unknown sample or a material similar to the unknowns.

📕 Acquire!						
1 2 228.045 129.268 193	3 x 3	¥ 4 11.0	z w 996 4.00000		Progress/Bea	m Deflection
1-PET 2-TAP	3-LIF Fa:	raday				
36. 83.	. 20	00.04				
Current Sample: Un 3 TDI Element setup Normal Acquisition Unknown			Start Standard	or Unknown Acquisition	3.85622	27.9034
Data Rows: 1	Good Data Rows: 1		Star	rt Wavescan	um .000000 px 0	.000000 0
New Sample	РНА		Move	Stage	Magnification	400
Elements/Cations	Peak/Scan Options	Acq	uisition Options	Imaging	Kilovolts	Analog Spot
Analytical Conditions	Count Times	Sp	ecial Options	Peaking Options	Beam Current	20
Combined Conditions	Locate		Rate Meter	Start Peaking	Acquire String	30

Click the **Special Options** button in the **Acquire!** window.

The Volatile Calibration and Quick Wavescan Samples window opens. The default acquisition choice is *Normal Acquisition*.

Volatile Calibration and Quick Wavescan Samples	
Special Sample Acquisition Options	
C Normal Acquisition	ОК
Acquire a normal standard unknown or wavescan sample	
	Cancel
O Self Calibration Time Dependent Intensity (TDI) Acquisition	
Acquire a time dependent intensity (TDI) element sample that Consider using	
uses a calibration curve based on itself. The TDI assignment "synchronous" will be made automatically. This method will append a new spectrometer	Setups
analysis line for each acquisition on an existing unknown acquisition for TDI	
sample. to minimize beam	
Note: time dependent intensity (TDI) elements must be the starting count	
first element acquired on each spectrometer. The acquisition integration.	
order may be modified in the Acquisition Uptions dialog.	
Time Dependent Intensity (TDI) Count Time Intervals	
Acquire TDI Data on Standard Samples	
C Assigned Calibration Time Dependent Intensity (TDI) Acquisition	
Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This	
assignment is made subsequently in the Standard Assignments	
dialog in the Analyze! window. This method will create a new time dependent intensity calibration sample for each acquisition	
Time Dependent Intensity (TDI) Semple Name	
Glass V-1-1 Time Dependent Intensity (TDI) Assigned Calibration	
Time Dependent Intensity (TDI) Count Time Intervals	
Stage X Increment (um)	
Stage Y Increment (um) 10	
O Quick Wavescan Acquisition	
Quick wavescan samples are created based on the first element on	
sample if present) or a selected sample setup. This method will	
create a new quick wavescan sample for each acquisition.	
Quick Wavescan Sample Name	
Glass V-I-I Quick Wavescan	
Quick Scan Speed % (.001 - 100) 10	
Use ROM Based Spectrometer Scan	

Click the **Setups** button in the **Volatile Calibration and Quick Wavescan Samples** window, opening the **Sample Setup Selection** dialog box. Check that the appropriate volatile setup is active.

Sample Setup Selection	
Available Sample Setups	Sample Setup Description
7 Rhyolite Glass Routine	TDI Element setup
8 TDI Element setup	<< Add To Sample Setups
	Un 3 TDI Element setup TO = 40, KeV = 15, Beam = 20, Size = 30 (MagAnal = 2000.), Mode = Analog Spot (MagDef = 400, MagImag = 40) Image Shift (X,Y): -2, 3 <u>si ka Spectro 1 PET (228.056)</u> na ka Spectro 2 TAP (129.262)
Load Sample Setups In Reverse Order When running combined multiple sample setups, the program will base the first column condition on the condition specified for the first element on spectrometer number one	
Delete Selection(s) From Sample Setups	
Clear Sample Setup Selection(s)	OK Cancel

Click the **OK** button.

Select the Assigned Calibration Time Dependent Intensity Acquisition method. Enter text into the Time Dependent Intensity Sample Name field. Edit the TDI Count Time Intervals (number of steps in the calibration line) and adjust the Stage X and Y Increment (um) values if required, resulting in the following window.

Special Sample Acquisition Options OK Normal Acquise a normal standard, unknown or wavescan sample. Cancel Self Calibration Time Dependent Intensity (TDI) Acquisition Consider using Synchronous' synchronous' synchronous sample. Note: time dependent intensity (TDI) element's asignment made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. Setups Note: time dependent intensity (TDI) clements must be the first element acquire on each spectrometer. The acquisition for TDI to to minimize beau escalisation order may be modified in the Acquisition Options dialog. 10 Time Dependent Intensity (TDI) Count Time Intervals as a TDI calibration Time Dependent Intensity (TDI) Acquisition 10 Acquire a time dependent intensity (TDI) Sample Name 10 Resigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) Sample Name Rivglitte Unknown for Calibration Curves 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample for each acquisition. Cuick Wavescan Sample	Volatile Calibration and Quick Wavescan Samples	
Normal Acquisition OK Acquire a normal standard, unknown or wavescan sample. Cancel Self Calibration Time Dependent Intensity (TDI) Acquisition Consider using "synchronous" sample, will be made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. Setups Note: time dependent intensity (TDI) elements must be the first element acquised on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. 10 Time Dependent Intensity (TDI) element sample for use as a TDI calibration curve for another sample(5). This assignment is made subsequently in the Standard Assignments as a subsequently in the Standard Assignments and subsequently in the Standard Assignments assignment is made subsequently in the Standard Assignments and subsequently in the Standard Assing matrestandard Assignments and subsequenthy in the	Special Sample Acquisition Options	
Acquire a normal standard, unknown or wavescan sample. Cancel Cancel Self Calibration Time Dependent Intensity (TDI) element sample that wells be made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. Consider using "synchronous" synchronous" spectrometer acquisition for TDI to minimize beam exposure before starting count integration. order may be madified in the Acquisition Options dialog. Setups Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be madified in the Acquisition Options dialog. 10 Cancel 10 Setups Acquire a time dependent intensity (TDI) count Time Intervals are time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent Intensity (TDI) Sample Name 10 Stage X Increment (um) 10 10 Stage X Increment (um) 10 10 Stage Y Increment (um) 10 10 Stage X Increment (um) 10 10	C Normal Acquisition	ОК
 Self Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TD) element sample that uses a calibration curve based on iself. The TDI assignment will be made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. Time Dependent Intensity (TDI) Count Time Intervals Acquire a time dependent intensity (TDI) Count Time Intervals	Acquire a normal standard, unknown or wavescan sample.	0
Selection and the Dependent intensity (TD) elements armple that uses a calibration curve based on itself. The TDI assignment is made automatically. This method will append a new analysis line for each acquisition on an existing unknown sample. Consider using "synchronous" acquisition for TDI to minimize beam exposure before starting count integration. order may be modified in the Acquisition Options dialog. Setups Time Dependent Intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. 10 Acquire TDI Data on Standard Samples 10 C Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for each acquisition. 10 Acquire a time dependent Intensity (TDI) Sample Name 10 Fibyolite Unknown for Calibration Curve 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Couick Wavescan Acquisition 10 Case + a new quick wavescan sample for each acquisition. 10 Cuick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition.	C. Calif Californian Time Dependent Interaity (TDI) Acquisition	Cancel
"synchronous" spectrometer analysis line for each acquisition on an existing unknown sample. "synchronous" spectrometer acquisition for TDI to minimize beem exposure before starting count integration. Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. Time Dependent Intensity (TDI) Count Time Intervals as a TDI calibration Time Dependent Intensity (TDI) Acquisition Acquire at time dependent intensity (TDI) elements ample for use as a TDI calibration time Dependent Intensity (TDI) Acquisition Acquire at time dependent intensity (TDI) element sample for use as a TDI calibration sample for each acquisition. Time Dependent Intensity (TDI) Bernent sample for use as a TDI calibration sample for each acquisition. Acquire TDI Data on Standard Samples (* Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire at time dependent intensity (TDI) Sample Name Filtyvolite Unknown for Calibration Curve Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Cuick Wavescan Acquisition Cuick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample for wavescan sample it present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Cuick Wavescan Sample Name Class V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10	Acquire a time dependent intensity (TDI) element sample that Co	nsider using
analysis line for each acquisition on an existing unknown sample. acquisition for TDI to minimize been Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. 10 Image: Time Dependent Intensity (TDI) Count Time Intervals as a TDI calibration Time Dependent Intensity (TDI) Acquisition 10 Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent intensity (TDI) Sample Name 10 Ethyolite Unknown for Calibration Curve 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan Acquisition 10 Cuick Wavescan Samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Ouick Wavescan Sample Name [Glass V-1-1 Quick Wavescan Glass V-1-1 Quick Wavescan 10 Use ROM Based Spectrometer Scon 10	uses a calibration curve based on itself. The TDI assignment simulation will be made automatically. This method will append a new structure struct	ynchronous" Setuns
stample. Bordinamic Stample Stamples Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Acquire TDI Date on Standard Samples 10 Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample (5). This assignments is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent intensity (TDI) Sample Name Rhyolite Unknown for Calibration Curve 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Stage Y Increment (um) 10 Cuick Wavescan Acquisition 10 Cuick Wavescan Samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample) or wavescan sample for each acquisition. Cuick Wavescan Sample Name [Glass V-1-1 Ouick Wavescan Glass V-1-1 Ouick Wavescan 10 Use ROM Based Spectrometer Scan 10	analysis line for each acquisition on an existing unknown acqui	uisition for TDI
Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog. Starting count integration. Time Dependent Intensity (TDI) Count Time Intervals 10 Acquire TDI Data on Standard Samples 10 Acquire a time dependent intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) Point as a a TDI calibration curve for another sample for use as a TDI calibration curve for another sample (s). This assignments dialog in the Analyzel window. This method will create a new time dependent intensity (TDI) Sample Name Rhyolite Unknown for Calibration Curve 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan Acquisition 10 Ouick Wavescan Acquisition 10 Ouick Wavescan Sample for each acquisition. 10 Ouick Wavescan Sample are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Ouick Wavescan Sample Name [] Use ROM Based Spectrometer Scan 10	exp	iosure before
Time Dependent Intensity (TDI) Count Time Intervals 10 Acquire TDI Data on Standard Samples 10 • Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent Intensity (TDI) Sample Name Image: The Dependent Intensity (TDI) Sample Name Rhyolite Unknown for Calibration Curve 10 Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan Acquisition 10 Ouick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Ouick Wavescan Sample Name Image: SV-1-1 Quick Wavescan Glass V-1-1 Quick Wavescan 10 Uick Scan Speed % (.001 - 100) Image: Use ROM Based Spectrometer Scan	Note: time dependent intensity (TDI) elements must be the first element acquired on each spectrometer. The acquisition order may be modified in the Acquisition Options dialog.	arting count ntegration.
 Acquire TDI Data on Standard Samples Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent intensity calibration sample for each acquisition. Time Dependent Intensity (TDI) Sample Name Rhyolite Unknown for Calibration Curve Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Couick Wavescan Acquisition each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Couick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) Use ROM Based Spectrometer Scan	Time Dependent Intensity (TDI) Count Time Intervals	10
 Assigned Calibration Time Dependent Intensity (TDI) Acquisition Acquire a time dependent intensity (TDI) element sample for use as a TDI calibration curve for another sample(s). This assignment is made subsequently in the Standard Assignments dialog in the Analyzel window. This method will create a new time dependent intensity (TDI) Sample Name Fhyolite Unknown for Calibration Curve Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Stage Y Increment (um) 10 Cuick Wavescan Acquisition Guick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Quick Scan Speed % (.001 - 100) 10	Acquire TDI Data on Standard Samples	
Time Dependent Intensity (TDI) Count Time Intervals 10 Stage X Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan Acquisition 10 Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Quick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10 Use ROM Based Spectrometer Scan 10	dependent intensity calibration sample for each acquisition. Time Dependent Intensity (TDI) Sample Name Rhyolite Unknown for Calibration Curve	
Stage X Increment (um) 10 Stage Y Increment (um) 10 Ouick Wavescan Acquisition 10 Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Quick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10 Use ROM Based Spectrometer Scan 10	Time Dependent Intensity (TDI) Count Time Intervals	10
Stage Y Increment (um) 10 Ouick Wavescan Acquisition Ouick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Quick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10 Use ROM Based Spectrometer Scan	Stage X Increment (um)	10
Ouick Wavescan Acquisition Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition. Quick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10	Stage Y Increment (um)	10
Quick Wavescan Sample Name Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) 10 Use ROM Based Spectrometer Scan	Ouick Wavescan Acquisition Quick wavescan samples are created based on the first element on each spectrometer used in the last unknown sample (or wavescan sample if present) or a selected sample setup. This method will create a new quick wavescan sample for each acquisition.	
Glass V-1-1 Quick Wavescan Quick Scan Speed % (.001 - 100) Use ROM Based Spectrometer Scan	Quick Wavescan Sample Name	
Quick Scan Speed % (.001 - 100) 10 Use ROM Based Spectrometer Scan 10	Glass V-1-1 Quick Wavescan	
Use ROM Based Spectrometer Scan	Quick Scan Speed % (.001 - 100)	10
	Use ROM Based Spectrometer Scan	

The TDI element effect will be calibrated precisely on the first unknown sample. One important assumption is that the TDI element behavior on the calibration sample is similar to all the unknowns to be analyzed. Therefore, because a consistent TDI correction is used, variation in composition represents real differences in composition (or volatilization) not precision of the analyses. Each element in the method (sample setup) will be acquired one element at a time. In this example, 10 time intervals are specified and the default on-peak count times for silicon and sodium are 20 and 40 respectively. Thus the calibration curve for each will be composed of 10 spots of 2 and 4 seconds each. The program will acquire each element in the sample (at a fresh spot) at a new stage position based on the X and Y increments specified to allow the volatile element effect to be calibrated precisely.

Click the **OK** button to return to the **Acquire!** window.

The TDI sample acquisition will start automatically upon clicking the **Start Standard or Unknown Acquisition** button, using the sample name entered in *the TDI Sample Name* field.

The user may now collect unknown data points. **REMEMBER** to load in the appropriate sample setup **AND** under the **Special Options** button of the **Acquire!** window, click the *Normal Acquisition* button.

After collecting an unknown sample the user may assign the volatile correction from the **Analyze!** window.

Nalyze!			
Sample List (multi-select) (double-click to see intensity data)	Analyze	Data KRaws	Combine Analysis
C Standards Un 1 * setup Un 2 Glass 108 std check	Combine Selected	Samples >>>Exce	Lines From Selected Samples
C Wavescans Un 3 TDI Element setup	List Report C	alculation Options	
C All Samples Un 5 Unknown Inclusion M-1-1	Pause Between Samples Use All Matrix Corrections		t Combine Data Lines
Add To Setup	Delete Selected Sa Undelete Selected S	ample(s) Match	From Selected Samples
Save Setups	Combined Condition	s Count Times	Sort Stat and Data
Specified Concentrations Standard Assignments Name/Desc	iption Conditions	Elements/Cations	Grids In Geological or Atomic Number
Total Oxygen Total Weight % Calculated Oxygen Z - Bar Excess Oxygen Atomic Weight			Urder
Copy			
			Þ
Delete Selected Line(s) Undelete Selected Line(s)) Analyze S	elected Line(s)	
Copy			▲
			Cancel Next

The volatile element calibration can be assigned to any element in a sample provided that it was acquired as the **FIRST** element on that spectrometer.

Click the **Standard Assignments** button. The **Standard and Interference Assignments** window opens.

<mark>ent Se</mark> ole Se	ement	leme		·	ок			-1	Inclusion M-1	Selected Sa
ole Se			Eleme	ave Elen	Sav					0 0 0 0
	mple	Sampl	Sampl	ave Sam	Sav					
Stan	ve Sta	nove (move	l/Remov	Add/					
d Ass	ard As	ndard	andard	l Standa	leload :	F				
Corre	DI Co	TDI (e TDI (nove TD	Rem					
A		2	2	2	2	1				
0,1	; ;	-1e	-Ele	terf-Ele	inte 	Standard 128	Analyzed Yes	ka ka	si	Jnannei
0,0						81	Yes	ka	na	2
int 0,1 0,1	3	Ele	-Ele	terf-Ele	Inte	Standard 128 81	Analyzed Yes Yes	X-Ray ka ka	Element si na	Channel 2

To evaluate the correction effect on sodium, click that element's row to view and edit its' TDI assignment.

The **Assignment Properties** window opens and lists all possible volatile element calibration samples.

Assignment Properties		
Enter Standard Assignments for: na ka		ОК
Element X-Ray Assigned (Prima	ary) Standard	
		Cancel
Use Virtual Standard For Standard Intensity Calculat	ion (see Analytical menu)	
☐ Interference Standard Assignments for Interfered Eleme	nt: na ka	
Intf Elem Intf Order	nterference Standard	
		Remove
		Remove
		Remove
5th		Bemove
Calculate Interferences	The standard used for the interference correction known concentration of the interfering element interfered element, nor any other interfering	n must contain a and none of the g elements.
Time Dependent Intensity (TDI) Calibration Assignment	(select unknown sample for calibration)	_
TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Un 4 Rhyolite Unknown for Calibration Curve 	Both "assigned" and "self" calibration Time Deperent samples can be acquired. See the Spectrum Acquire window. Both "assigned" and "self" Time Dependent Intercalibrations can be assigned or unassigned her Dependent Intensity (TDI) corrections are assigned reactive with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned Time Dependent Intensity (TDI) element "self" automatically assigned to themselves at the time Display TDI Fit	endent Intensity (TDI) cial Options dialog in nsity (TDI) element re. Assigned Time gned to samples tions. "Self" Time ned to themselves. calibrations are me of acquisition.
 Use Log-Linear (exponential) Fit Use Log-Quadratic (hyper-exponential) Fit 	5.80298, Intercept= 331.285	ntercept=
Blank Correction Sample Assignment Un 2 Glass std check Un 3 Volatile Element setup Un 4 Rhyolite Unknown for Calibration Curve Un 5 Unk Inclusion M-1-1 Un 11 sample 1	Assign a sample to be used for a "blank" trace The blank sample should be a similar matrix to and should have a zero or known trace of the Blank Level (wt. %)	element correction. the unknown sample e element present. emove Blank Assignment

Highlight the appropriate *Time Dependent Intensity Calibration Assignment* sample and click the **Display TDI Fit** button.

The Time Dependent Intensity (Assigned) Fit Plot window opens.

The drop in sodium count intensity with time appears to fit an exponential function (Nielson and Sigurdsson, 1981). A plot of the natural log of the intensity data versus time should yield a straight line relationship as seen above.

The extrapolation correction is quantitative in that the correction is based on a calibration curve acquired during the run. The correction uses the actual elapsed time for all calculations. It is applied during the ZAF or Phi-Rho-Z iteration phase of the analysis to correct for changes in the matrix correction due to the extrapolation correction.

Along with alkali loss, the operator may notice an increase in count intensity from the nonmobile elements (such as silicon and aluminum) in the sample. The possible enhancement with time may be corrected for as well.

Close the **Time Dependent Intensity (Assigned) Fit Plot** window, returning to the **Assignment Properties** window. Click the **OK** button.

To evaluate the possible enhancement of intensity with time on silicon in the rhyolitic glass, click on the element row for silicon in the **Standard and Interference Assignments** window.

ls ients
ls ients n
ls nents
ls ients n
nents
n
ß
std N
,0

The Assignment Properties window opens. Again, highlight the appropriate *TDI Calibration Sample Assignment* sample and click the **Display TDI Fit** button.

The **Time Dependent Intensity (Assigned) Fit Plot** window opens displaying the natural log of silicon x-ray intensity versus time. The enhancement is evident and maybe corrected for quantitatively.

Return to the **Analyze!** window by clicking the **Close** button above.

Click the **OK** button of the **Assignment Properties** and the **Standard and Interference Assignments** windows, respectively.

Advanced Interference Corrections

PROBE FOR EPMA permits the user to select a fully quantitative correction for spectral interferences (Donovan et al., 1993). The user can correct for up to four interfering elements per channel. The program requires that both the interfered and interfering elements be analyzed for. Further, an interference calibration standard must be acquired that contains a major concentration of the interfering element and none of the interfered element nor any other elements that interfere with the interfered element.

Most interferences between a pair of elements work in one direction. Consider a phase with high concentrations of manganese in the presence of the iron. Here the Mn K β line interferes with the Fe K α analytical line. The reverse situation does not cause a problem, iron does not interfere with manganese. However, there are some cases where both elements interfere with each other! These dual interfering elements are extremely difficult to correctly quantify. Fortunately, PROBE FOR EPMA can handle this situation because it's quantitative interference correction is an iterated solution (see Donovan et al., 1993 for details).

The following example (analyzed at U.C. Berkeley by John Donovan) involves the dual interference of zinc and rhenium in a natural organo-metallic phase. Both lines interfere with each other (Zn K α and Re L α) and both lines are used for quantitative analysis. Other elements analyzed for are cesium, iron, sulfur, and selenium. Oxygen, nitrogen, carbon and hydrogen are also in the samples. Each is listed in the **Element/Cations** window for use in the matrix correction routine but are not analyzed.

Solving these interferences requires the analyses of both rhenium and zinc and two interference standards. To correct for the interference on zinc, a standard that contains rhenium but no zinc is required. Likewise, to handle the interference on rhenium, a standard will be needed that contains zinc but no rhenium.

The procedure to specify interferences and the correction thereof was documented in the silicate chapter in the Users Guide to Getting Started manual, cogent details will briefly mentioned here.

To view the various interference assignments, click the **Standard Assignment** button in the **Analyze!** window.

Un 10 Zn-	ReSCN ar2				ОК	Cancel
					Save Eler	ment Setup
					Save San	nple Setup
					Add/Remov	ve Standards
				R	eload Standa	urd Assignments
					Remove TI	OI Correction
				1	2 3	4 5 6
Click Eleme Channel	ent Row to Edit	Standard/Into	erference/Time	Dependent In	tensity (TDI)	Assignments
Click Eleme Channel 1	ent Row to Edit Element cs	Standard/Inte	erference/Time	Dependent Int	tensity (TDI)	Assignments
Click Eleme Channel 1 2	ent Row to Edit Element cs fe	X-Ray	erference/Time Analyzed Yes Yes	Dependent Int Standard 834 730	Interf-Ele	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 1 2 3	ent Row to Edit Element cs fe zn	X-Ray la ka ka	Analyzed Yes Yes Yes Yes	Dependent Int Standard 834 730 660	Interf-Ele	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0
Click Eleme Channel 1 2 3 4	ent Row to Edit Element cs fe zn re	X-Ray la ka ka la	Analyzed Yes Yes Yes Yes Yes	Dependent Int Standard 834 730 660 575	Interf-Ele	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0
Click Eleme Channel 1 2 3 4 5	ent Row to Edit Element cs fe zn re s	X-Ray la ka ka la ka	Analyzed Yes Yes Yes Yes Yes Yes Yes	Dependent Int Standard 834 730 660 575 730	tensity (TDI) / Interf-Ele re zn cs	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0 834,0,0,0,0
Click Eleme Channel 1 2 3 4 5 6	ent Row to Edit Element cs fe zn re s se	X-Ray la ka ka la ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes Yes	Dependent Int Standard 834 730 660 575 730 660 660	tensity (TDI) Interf-Ele re zn CS 	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0 834,0,0,0,0 0,0,0,0 0,0,0,0
Click Eleme Channel 1 2 3 3 4 5 5 6 7	ent Row to Edit Element cs fe zn re s s se o	X-Ray la ka ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes Yes No	Dependent Int Standard 834 730 660 575 730 660 660 0	tensity (TDI) Interf-Ele re zn cs 	Assignments 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0 834,0,0,0,0 0,0,0,0,0 0,0,0,0,0
Click Eleme Channel 1 2 3 4 5 5 6 7 8	ent Row to Edit Element cs fe zn re s s se o n	Standard/Inte	Analyzed Yes Yes Yes Yes Yes Yes Yes No No	Dependent Int Standard 834 730 660 575 730 660 0 0	tensity (TDI) / Interf-Ele re zn cs 	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0 834,0,0,0,0 0,0,0,0 0,0,0 0,0,0,0 0,0,0 0,0,0,
Click Eleme Channel 1 2 3 4 5 5 6 7 8 9	ent Row to Edit Element cs fe zn re s s se o n c	X-Ray la ka ka ka ka ka ka	Analyzed Yes Yes Yes Yes Yes Yes Yes No No No	Dependent Int Standard 834 730 660 575 730 660 0 0 0 0 0	tensity (TDI) / Interf-Ele re zn zn cs cs 	Assignments Interf-Std 0,0,0,0,0 0,0,0,0,0 575,0,0,0,0 660,0,0,0,0 834,0,0,0,0 0,0,0,0 0,0,0 0,0,0,0 0,0,0,0 0,0,0 0,0,0,0

The Standard and Interference Assignments window opens.

In John's routine, Cs L α is measured on the standard CsBr, likewise Fe K α is done on a pyrite (FeS₂) standard and the Se K α line is measured on the ZnSe standard.

Zinc, rhenium and sulfur require additional discussion.

Highlighting the zinc element row opens the **Assignment Properties** window for that element. The user has the option to display all possible interferences based on the current set of analyzed and interfered elements. Clicking the **Calculate Interference** button displays these. The program calculates the interference based on a gaussian peak shape assuming a worst case scenario of 0.1% of the analyzed element and 100% of each of the other analyzed and possibly interfering elements.

As mentioned earlier and seen below, Re L α interferes with the Zn K α on the LIF crystal. To correct for this overlap, a standard with no zinc present (rhenium metal) is employed for the calculation.

signment Pro	operties			
Enter Standa	ard Assignmer	its for: zn ka		ОК
Element	X-Ray	Assigned (Prin	nary) Standard	
zn 💌	ka 💌	660 ZnSe (synthetic)	•	Cancel
🗌 Use Virtu	al Standard F	or Standard Intensity Calcul	ation (see Analytical menu)	
Interference	Standard Ass	ignments for Interfered Elem	ent: zn ka	
IntfE 1st re	lem IntfOrd ▼	er 575 rhenium metal	Interference Standard	Remove
2nd				Remove
3rd				Remove
4th				Bemove
5th				Remove
Interfero Interfero Interfero Interfero Interfero	ence by Re S ence by Re L ence by Re S ence by Re S ence by Re L	LAY at 1.4305 Al at 1.4331 LA3^Z at 1.4348 LAS at 1.4348 A2 at 1.4442	$\begin{array}{rcl} 0 &=& 539,7 \\ 0 &=& 62354.2 \\ 0 &=& 656.0 \\ 0 &=& 657.1 \\ 0 &=& 5265.9 \\ \end{array}$	<u>م</u> ح
TDI Corre No T Use ¹ Use ¹ Use ¹	ection Type (S DI Calibration TDI "Self" Cal TDI "Assigned	(TDI) Calibration Assignmen elf or Assigned) Correction ibration Correction I* Calibration Correction	t (select unknown sample for calibration) Both "assigned" and "self" calibration Time Depe element samples can be acquired. See the Spec the Acquire window. Both "assigned" and "self" Time Dependent Inter calibrations can be assigned or unassigned her Dependent Intensity (TDI) corrections are assig acquired with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assign Time Dependent Intensity (TDI) element "self" automatically assigned to themselves at the tir Display TDI Fit	ndent Intensity (TD ial Options dialog i e. Assigned Time gned to samples tions. "Self" Time red to themselves. calibrations are ne of acquisition.
O Use Log Blank Correc Un 2 Fe-P Un 3 Fe-P	ction Sample / ReSCN ReSCN gr2	yper-exponential) Fit	Assign a sample to be used for a "blank" trace of The blank sample should be a similar matrix to t	element correction. he unknown sampl
Un 4 Fe-F Un 5 Fe-F Un 6 Fe-F	teSCN gr3 teSCN gr4 teSeCN gr1		and should have a zero or known trace of the	element present. emove Blank

The Assignment Properties window for Re L α is shown next. Here, Zn K α interferes with the Re L α x-ray position. To make the quantitative correction the standard ZnSe (with no rhenium) is used.

nter Standard Assignments for: re la	
Element X-Ray Assigned (Primary) Standard	UK
e 🔽 la 🔽 575 rhenium metal	Cancel
Line Vietual Standard For Standard Intensity Coloulation (see Analytical manu)	
Ose virtual standard For standard intensity Calculation (see Analytical menu)	
terference Standard Assignments for Interfered Element: re la	
Interference Standard	
st zn 💌 I 💌 660 ZnSe (synthetic)	Remove
nd 🔍 🔍	Remove
d V	Remove
h V V	Remove
	Remove
Check All Interfering Elements Minimum Overlap I he standard used for the interference correction Intensity known concentration of the interfering element	on must contain a and none of the
Calculate Interferences	g elements.
Tatex for a part of the second seco	
Interference by $2n$ SKAS at 1.42520 = 521.2% Interference by $2n$ SKAS at 1.43000 = 950.8%	
Interference by Zn SKA at $1.43060 = 968.7$ %	
Interference by $2n KAI$ at 1.43550 = 90051.0% Interference by $2n KA2$ at 1.43930 = 40269.6%	_
_	
ime Dependent Intensity (TDI) Calibration Assignment (coloct unknown cample for calibration)	
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration)	
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) - TDI Correction Type (Self or Assigned) Both "assigned" and "self" calibration Time Depa element samples can be acquired. See the Sper	endent Intensity (T cial Options dialog
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) - TDI Correction Type (Self or Assigned) © No TDI Calibration Correction the Acquire window.	endent Intensity (T cial Options dialog
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) Both "assigned" and "self" calibration Time Dependent samples can be acquired. See the Spectrum the Acquire window. Use TDI "Self" Calibration Correction Both "assigned" and "self" Time Dependent Intensity (TDI) Calibration Correction 	endent Intensity (T cial Options dialog ensity (TDI) elemer
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) © No TDI Calibration Correction © Use TDI "Self" Calibration Correction © Use TDI "Assigned" Calibration Correction © Use TDI "Assigned" Calibration Correction 	endent Intensity (T cial Options dialog ensity (TDI) elemen rre. Assigned Time
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) © No TDI Calibration Correction © Use TDI "Self" Calibration Correction © Use TDI "Assigned" Calibration Correction © Use TDI "Assigned" Calibration Correction © Use TDI "Assigned" Calibration Correction 	endent Intensity (T cial Options dialog ensity (TDI) eleme rre. Assigned Time igned to samples otions. "Self" Time
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) © No TDI Calibration Correction © Use TDI "Self" Calibration Correction © Use TDI "Assigned" Calibration Correction 	endent Intensity (T cial Options dialog ensity (TDI) eleme rre. Assigned Time igned to samples otions. "Self" Time ned to themselves
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned to the meselves at the time Dependent Intensity (TDI) element "self" 	endent Intensity (T cial Options dialog ensity (TDI) eleme ire. Assigned Time igned to samples otions. "Self" Time ned to themselves "calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) element "self" automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to themselves at the time of the self automatically assigned to the self automatically assigne	endent Intensity (T cial Options dialog ensity (TDI) eleme ire. Assigned Time igned to samples otions. "Self" Time ned to themselves "calibrations are ime of acquisition.
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections Dependent Intensity (TDI) corrections are assigned or unassigned to the selign of the sel	endent Intensity (T cial Options dialog ensity (TDI) eleme re. Assigned Time igned to samples bitions. "Self" Time ned to themselves " calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned with the "assigned to themselves at the time to the to the the self automatically assigned to themselves at the time to the to the self automatically assigned to themselves at the time to the self automatically assigned to themselves at the time to the self automatically assigned to themselves at the time to the self automatically assigned to themselves at the time to the self automatically assigned to themselves at the time to the self automatically assigned to themselves at the time to the self automatically assigned to th	endent Intensity (T cial Options dialog ensity (TDI) element re. Assigned Time igned to samples otions. "Self" Time ned to themselves " calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections are assigned in Special Op Dependent Intensity (TDI) element "self" automatically assigned to themselves at the time of Use Log-Linear (exponential) Fit 	endent Intensity (T cial Options dialog ensity (TDI) elementere. Assigned Time igned to samples otions. "Self" Time ned to themselves ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use tog-Linear (exponential) Fit Use Log-Quadratic (hyper-exponential) Fit 	endent Intensity (T cial Options dialog ensity (TDI) elemen igned to samples otions. "Self" Time ned to themselves " calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use Log-Linear (exponential) Fit Use Log-Quadratic (hyper-exponential) Fit 	endent Intensity (T cial Options dialog ensity (TDI) elemen igned to samples otions. "Self" Time ned to themselves " calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use Log-Linear (exponential) Fit Use Log-Quadratic (hyper-exponential) Fit 	endent Intensity (T cial Options dialog ensity (TDI) element igned to samples otions. "Self" Time ned to themselves " calibrations are ime of acquisition.
 ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) No TDI Calibration Correction Use TDI "Self" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Use TDI "Assigned" Calibration Correction Dependent Intensity (TDI) corrections are assigned in the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assigned to themselves at the time Dependent Intensity (TDI) element "self" automatically assigned to themselves at the time Display TDI Fit Use Log-Linear (exponential) Fit Lank Correction Sample Assignment 	endent Intensity (T cial Options dialog ensity (TDI) element igned to samples otions. "Self" Time ned to themselves "calibrations are ime of acquisition.
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) Image: No TDI Calibration Correction Image: Use Log-Linear (exponential) Fit Image: Calibration Sample Assignment Image: Calibration Sample Sample Samp	endent Intensity (T cial Options dialog ensity (TDI) element igned to samples otions. "Self" Time ned to themselves "calibrations are ime of acquisition.
ime Dependent Intensity (TDI) Calibration Assignment (select unknown sample for calibration) TDI Correction Type (Self or Assigned) Image: No TDI Calibration Correction Image: Use TDI *Assigned* Calibration Correction Image: Use Log-Linear (exponential) Fit Image: Parenesc N gr2 Image: Parenesc N g	endent Intensity (T cial Options dialog ensity (TDI) element rre. Assigned Time igned to samples otions. "Self" Time ned to themselves " calibrations are ime of acquisition.

Finally, the **Assignment Properties** window for S K α is displayed. In this unique mineral, Cs L β overlaps with S K α . Therefore, a cesium standard without sulfur (CsBr) is also required to complete the spectral interference deconvolution!

Assignment Properties			
Enter Standard Assignmen	ts for: s ka		OK
Element X-Ray	Assigned (Primary	y) Standard	UK
s 🔻 ka 🔻	730 pyrite UC # 21334		Cancel
Use Virtual Standard Fo	or Standard Intensity Calculatio	n (see Analytical menu)	
	,	, , , , , , , , , , , , , , , , , , , ,	
Interference Standard Assi	gnments for Interfered Element	t s ka	
Intf Elem Intf Ord	er Int	erference Standard	
	834 CsBr (synthetic)	<u> </u>	Remove
2nd 🗨	_	<u> </u>	Remove
3rd 🗾 🚽	_		Remove
4th 🔽	V	•	Remove
5th 🗨	v	•	Remove
Check All Interfering Ele Calculate Interferences For S ka PET at Interference by Re L0 Interference by Cs LE Interference by Cs LE	Minimum Overlap Intensity 5.37310 angstroms, concent 31 V at 5.30620 = 34 II at 5.33370 = 31 II at 5.36860 =	The standard used for the interference correction known concentration of the interfering element interfered element, nor any other interfering cration of .100 wt.% = 11.5% = 878.2% = 22426.5%	n must contain a and none of the g elements.
<u> </u>			
Time Dependent Intensity (TDI Correction Type (So No TDI Calibration Use TDI "Self" Cali Use TDI "Assigned	(TDI) Calibration Assignment (self or Assigned) Correction bration Correction Calibration Correction	Both "assigned" and "self" calibration) Both "assigned" and "self" calibration Time Deperent samples can be acquired. See the Spectrum the Acquire window. Both "assigned" and "self" Time Dependent Intercalibrations can be assigned or unassigned her Dependent Intensity (TDI) corrections are assigned with the "assigned" flag in Special Op Dependent Intensity (TDI) corrections are assign Time Dependent Intensity (TDI) corrections are assign automatically assigned to themselves at the time Display TDI Fit	endent Intensity (TDI) cial Options dialog in nsity (TDI) element re. Assigned Time gned to samples tions. "Self" Time ned to themselves. calibrations are me of acquisition.
 Use Log-Linear (expoint C) Use Log-Quadratic (hy 	nential) Fit /per-exponential) Fit		
Blank Correction Sample A Un 2 Fe-ReSCN Un 3 Fe-ReSCN gr2 Un 4 Fe-ReSCN gr3 Un 5 Fe-ReSCN gr4 Un 6 Fe-ReSeCN gr1 Un 7 Fe-ReSeCN gr2	ssignment	Assign a sample to be used for a "blank" trace of The blank sample should be a similar matrix to and should have a zero or known trace of the Blank Level (wt. %)	element correction. the unknown sample element present emove Blank Assignment

After setting up the parameters for the analysis session, calibration and standardization was accomplished, then several tiny and complex organometallic phases were probed for their chemistry.

The **Analysis Calculation Options** window allows the user to enable or disable the interference correction routine to view its effect on quantitative analysis results. This window is activated from the **Analytical** | **Analysis Options** menu in the main PROBE FOR EPMA log window.

Analysis Calculation Options	
Quantitative Acquisition Options Image: Second Se	OK
Use Beam Drift Correction Use Automatic Drift Correction on Standard Intensities Quantitative Analysis Options	Calculation Options Use Aggregate Intensities for Duplicate Quantitative Elements Use Blank Calibration Sample Trace Element Accuracy Corrections Force Negative K-Ratios To Zero in ZAF Calculations
Use Assigned Interference Corrections on Standards and Unknowns Do Not Use Matrix Correction Term For Full Quant Interference Correction Do Not Use Full Quant Interference Corrections (use traditional Gilfrich, et. al.) Use Assigned or Self Time Dependent Intensity (TDI) Corrections on Unknowns Use Linear Fit (slope coefficient only) for TDI Extrapolation Use Time Weighted Data for TDI Fit (weight intensities based on elasped time) Time Weighted Data Weight Factor 2	 Calculate Electron and Xray Ranges for Sample Compositions Use Oxygen From Halogens (F, Cl, Br and I) Correction Use Nth Point Calculation For Off-Peak Intensities (for testing only) Use Count Overwrite Intensity Table for Data Calculations Force Negative Interference Intensities To Zero in Corrections Use Chemical Age Calculation (U, Th, Pb)
 Use Absorption Corrected MAN Continuum Intensities Use Particle or Thin Film Correction Parameters Check For Same Peak Positions in Unknown and Standard Check For Same PHA Settings in Unknown and Standard Use Zero Point For Calibration Curve (off-peak elements only) Use Conductive Coating Correction For Beam Energy Loss Use Conductive Coating Correction For X-ray Absorption 	 Formatting Options Use Automatic Format For Quantitative Results Display the Maximum Number of Numerical Digits Display Only Statistically Significant Number of Numerical Digits ✓ Use Detailed Printout For Data and Analytical Results ✓ Print Analyzed And Specified On Same Line ✓ Display Court Intensities Unnormalized To Time (in Analyze!)
MAC (mass absorption coefficient) and APF (area peak factor) Options Use Empirical MAC Values Use Empirical APF Values © Use Empirical APF Factors (calculated from elemental composition) © Use Specified APF Factors (based on a fixed composition)	 Display Charge Balance Calculation Elemental Output Sort Order For JJD-2 and HW Custom Output: Use Traditional Geological Sort Order (SiO2, TiO2, etc.) Use Low To High Atomic Number Sort Order Use High To Low Atomic Number Sort Order

Data illustrating the power of the PROBE FOR EPMA interference correction routine is shown below. The results are for a real unknown sample that has some variability and was rather small to analyze. The following unknown analysis is without any interference corrections.

Un 10 Zn-ReSCN gr2 TakeOff = 40.0 KiloVolt = 20.0 Beam Current = 20.0 Beam Size = 0 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) Image Shift (X,Y): -2, 3 Number of Data Lines: 5 Number of 'Good' Data Lines: 3 First/Last Date-Time: 06/15/1998 04:39:29 PM to 06/15/1998 04:55:23 PM WARNING- Forcing negative k-ratios to zero Average Total Oxygen: .000 Average Total Weight%: 122.912 Average Calculated Oxygen: .000 Average Atomic Number: 53.080 Average Excess Oxygen: .000 Average Atomic Weight%: 54.153 Average ZAF Iteration: 4.00 Average Quant Iterate: 2.00 Un 10 Zn-ReSCN gr2, Results in Elemental Weight Percents SPEC: 0 N C H TYPE: SPEC SPEC SPEC SPEC

SPEC	SPEC	SPEC	SPEC				
1.900	5.000	4.200	.200				
.000	.000	.000	.000				
	1.900 .000	SPEC SPEC 1.900 5.000 .000 .000	SPEC SPEC SPEC 1.900 5.000 4.200 .000 .000 .000				
ELEM:	Cs	Fe	Zn	Re	S	Se	
-------	---------	---------	---------	----------	---------	---------	---------
BGDS:	LIN	LIN	LIN	LIN	LIN	LIN	
TIME:	10.00	10.00	10.00	10.00	10.00	10.00	
BEAM:	.20	.20	.20	.20	.20	.20	
ELEM:	Cs	Fe	Zn	Re	S	Se	SUM
53	.000	.000	19.553	73.669	17.465	.000	121.988
55	.000	.007	20.556	74.517	16.507	.000	122.886
56	.000	.019	19.668	74.715	18.159	.000	123.862
AVER:	.000	.009	19.926	74.301	17.377	.000	122.912
SDEV:	.000	.010	.549	.556	.830	.000	.937
SERR:	.000	.006	.317	.321	.479	.000	
%RSD:	.10	113.30	2.75	.75	4.77	.13	
STDS:	834	730	660	575	730	660	
STKF:	.5978	.4297	.5001	1.0000	.4719	.5162	
STCT:	627.07	3670.93	3712.94	3672.80	4423.12	1315.94	
UNKF:	.0000	.0001	.2100	.6516	.0943	.0000	
UNCT:	-2.69	.33	1559.22	2393.02	884.28	-3.16	
UNBG:	11.62	28.03	67.30	61.54	6.57	64.00	
ZCOR:	1.2016	.9276	.9487	1.1404	1.8421	1.0254	
KRAW:	0043	.0001	.4199	.6516	.1999	0024	
PKBG:	.77	1.01	24.18	40.00	135.89	.95	
Un 10	Zn-ReS0	CN gr2,	Results	Based on	6 Atoms	of re	
SPEC:	0	Ν	C	Н			
TYPE:	SPEC	SPEC	SPEC	SPEC			
AVER:	1.786	5.368	5.258	2.983			
SDEV:	.013	.040	.039	.022			
ELEM:	Cs	Fe	Zn	Re	S	Se	SUM
53	.000	.000	4.536	6.000	8.260	.000	34.323
55	.000	.002	4.714	6.000	7.718	.000	33.784
56	.000	.005	4.499	6.000	8.468	.000	34.281
AVER:	.000	.002	4.583	6.000	8.149	.000	34.129
SDEV:	.000	.003	.115	.000	.387	.000	.300
SERR:	.000	.002	.067	.000	.224	.000	
%RSD∶	.77	113.20	2.51	.00	4.75	.79	
%RSD:	.8	113.2	2.5	. 0	4.8	. 8	

The user immediately realizes that there is a problem since the unknown sums to a total of 123%.

The following is the same unknown but with the iterated interference software applied.

Un 10 TakeOff (Magnif: (Magnif: Image Sh Number of First/La WARNING	Zn-ReSC = 40.0 ication ication hift (X, of Data ast Date - Forcir	CN gr2 KiloVol (analyti (default ,Y): Lines: e-Time: (ng negati	lt = 20. ical) = 5 06/15/19 ive k-ra	0 Beam (2000), 0, Ma 98 04:39 tios to 2	Current = I agnificat Number of :29 PM to zero	= 20.0 H Beam Mode tion (ima f 'Good' 5 06/15/2	Beam Size = Anale aging) = -: Data Lin 1998 04:	e = 0 og Spot 40) 2, 3 nes: 3 55:23 PM
Average Average Average Average	Total (Calcula Excess ZAF Ite	Dxygen: ated Oxyg Oxygen: eration:	gen:	.000 .000 .000 4.00	Average Average Average Average	Total We Atomic M Atomic W Quant It	eight%: Number: Neight: cerate:	101.367 54.332 50.124 13.00
Un 10	Zn-ReSC	CN gr2, H	Results :	in Elemer	ntal Weig	ght Perce	ents	
SPEC: TYPE:	0 SPEC	N SPEC	C SPEC	H SPEC				
AVER: SDEV:	1.900 .000	5.000 .000	4.200	.200				
ELEM: BGDS: TIME: BEAM:	Cs LIN 10.00 .20	Fe LIN 10.00 .20	Zn LIN 10.00 .20	Re LIN 10.00 .20	S LIN 10.00 .20	Se LIN 10.00 .20		
ELEM: 53 55 56	Cs .000 .000 .000	Fe .000 .007 .020	Zn 6.237 7.365 6.100	Re 65.850 65.342 67.048	S 17.508 16.513 18.210	Se .000 .000 .000	SUM 100.895 100.527 102.678	
AVER: SDEV: SERR: %RSD: STDS:	.000 .000 .000 .13 834	.009 .010 .006 113.29 730	6.568 .694 .401 10.57 660	66.080 .876 .506 1.33 575	17.410 .853 .492 4.90 730	.000 .000 .000 .03 660	101.367 1.150	
STKF: STCT:	.5978 627.07	.4297 3670.93	.5001 3712.94	1.0000 3672.80	.4719 4423.12	.5162 1315.94		
UNKF: UNCT: UNBG:	.0000 -2.69 11.62	.0001 .33 28.03	.0691 512.67 67.30	.5781 2123.23 61.54	.0943 884.28 6.57	.0000 -3.16 64.00		
ZCOR: KRAW: PKBG: INT%:	1.2162 0043 .77 	.9395 .0001 1.01	.9511 .1381 8.61 -67.17	1.1431 .5781 35.59 -11.27	1.8455 .1999 135.89 	1.0235 0024 .95 		
Un 10	Zn-ReSC	CN gr2, H	Results 1	Based on	6 Atoms	of re		
SPEC: TYPE:	0 SPEC	N SPEC	C SPEC	H SPEC				
AVER: SDEV:	2.008 .026	6.036 .080	5.913 .078	3.355 .044				
ELEM: 53 55 56	Cs .000 .000 .000	Fe .000 .002 .006	Zn 1.619 1.926 1.555	Re 6.000 6.000 6.000	S 9.264 8.805 9.463	Se .000 .000 .000	SUM 34.252 34.239 34.083	
AVER: SDEV: SERR: %RSD:	.000 .000 .000 1.21	.003 .003 .002 112.34	1.700 .199 .115 11.69	6.000 .000 .000 .00	9.177 .337 .195 3.68	.000 .000 .000 1.30	34.191 .094	

The total now is acceptable, slightly over 100%.

Finally to demonstrate with standard samples (of known composition), both rhenium metal and the ZnSe standard will be reproduced without the benefit of the interference correction.

St 575 Set 1 rhenium metal TakeOff = 40.0 KiloVolt = 20.0 Beam Current = 20.0 Beam Size = 0 (Magnification (analytical) = 2000), Beam Mode = Analog Spot (Magnification (default) = 0, Magnification (imaging) = 40) -2, Image Shift (X,Y): 3 Number of Data Lines: 5 Number of 'Good' Data Lines: 5 First/Last Date-Time: 06/15/1998 01:40:14 PM to 06/15/1998 01:48:18 PM WARNING- Forcing negative k-ratios to zero .000 Average Total Oxygen: Average Total Weight%: 124.489 Average Calculated Oxygen: .000 67.420 Average Atomic Number: Average Excess Oxygen: .000 Average Atomic Weight: 142.028 Average ZAF Iteration: 3.00 Average Quant Iterate: 2.00 St 575 Set 1 rhenium metal, Results in Elemental Weight Percents ELEM: Cs Fe Zn Re S Se LIN BGDS: LIN LIN LIN LIN LIN TIME: 10.00 10.00 10.00 10.00 10.00 10.00 .20 .20 .20 .20 .20 BEAM: .20 ELEM: Cs Zn S Se SUM Fe Re .000 .000 21.083 103.240 .022 .000 124.344 1 2 .005 20.061 102.988 .008 .000 123.223 .161 .000 .000 .000 21.644 103.274 .176 125.093 3 .156 125.578 4 .000 .023 21.565 103.834 .000 .213 124.207 5 .000 .000 19.873 104.122 .000 .109 124.489 AVER: .032 .006 20.845 103.492 .006 .010 .072 .469 .009 SDEV: .833 .102 .902 SERR: .032 .004 .372 .210 .004 .045 %RSD: 223.61 177.20 3.99 .45 159.05 93.18 PUBL: n.a. 100.000 n.a. 100.000 n.a. n.a. n.a. %VAR∶ .00 .00 .00 3.49 .00 .00 DIFF: .000 .000 .000 3.492 .000 .000 STDS: 834 730 660 575 730 660 5978 .4297 .5001 1.0000 4719 .5162 STKF: 628.01 3665.44 3726.73 3679.31 4367.49 1316.18 STCT: UNKF: .0003 .0001 .2405 1.0000 .0000 .0012 UNCT: -.02 -1.11 1792.16 3679.35 -.42 1.76 UNBG: 11.57 41.92 95.49 93.54 8.43 93.41 1.2008 .8667 1.0349 2.1623 .9212 ZCOR: .8713 .0000 -.0003 .4809 1.0000 -.0001 KRAW: .0013 19.77 PKBG: 1.00 .97 40.37 .95 1.02

St 660 TakeOff (Magniff (Magniff Image Sh Number of First/La WARNING	Set 1 = 40.0 ication ication hift (X, of Data ast Data - Forcir	I ZnSe (s KiloVol (analyti (default (Y): Lines: E-Time: (ng negati	synthetic lt = 20.(ical) = t) = 5 06/15/199 ive k-rat	2) Beam (2000), 0, Ma 1 98 01:50 2105 to 2	Current = I agnificat Number of :41 PM to zero	= 20.0 1 Beam Mode tion (ima f 'Good' 5 06/15/3	Beam Siz = Analo aging) = - Data Lin 1998 01:	e = 0 pg Spot 40) 2, 3 nes: 5 58:46 PM
Average	Total ()xvqen:		.000	Average	Total W	eight%:	151.911
Average	Calcula	ated Oxvo	aen:	.000	Average	Atomic 1	Number:	47.924
Average	Excess	Oxygen:		.000	Average	Atomic 1	Weight:	92.977
Average	ZAF Ite	eration:		3.00	Average	Quant I	terate:	2.00
-					-			
St 660	Set 1	L ZnSe (s	synthetic	c), Resul	lts in E	lemental	Weight	Percents
ELEM:	Cs	Fe	Zn	Re	S	Se		
BGDS:	LIN	LIN	LIN	LIN	LIN	LIN		
TIME:	10.00	10.00	10.00	10.00	10.00	10.00		
BEAM:	.20	.20	.20	.20	.20	.20		
ELEM:	Cs	Fe	Zn	Re	S	Se	SUM	
6	.000	.000	44.441	55.414	.019	51.417	151.290	
7	.000	.014	44.022	56.029	.036	51.668	151.768	
8	.000	.000	44.551	56.249	.035	51.099	151.934	
9	.000	.015	44.701	56.069	.037	50.975	151.796	
10	.000	.000	45.281	56.025	.052	51.409	152.767	
AVER:	.000	.006	44.599	55.957	.036	51.314	151.911	
SDEV:	.000	.008	.457	.317	.012	.277	.537	
SERR:	.000	.003	.204	.142	.005	.124		
%RSD:	.02	137.06	1.02	.57	33.50	.54		
PUBL:	n.a.	n.a.	45.290	n.a.	n.a.	54.710	100.000	
%VAR:	.00	.00	-1.53	.00	.00	-6.21		
DIFF:	.000	.000	691	.000	.000	-3.396		
STDS:	834	730	660	575	730	660		
STKF:	.5978	.4297	.5001	1.0000	.4719	.5162		
STCT:	628.01	3665.44	3726.64	3678.98	4367.49	1316.18		
UNKF:	.0000	.0001	5002	.5193	.0002	5162		
UNCT:	-23.07	-1.38	3726.73	1910.63	1.72	1316.18		
UNBG:	29.32	22.96	48.34	47.66	5.61	47.46		
		,,						
ZCOR:	1.1332	.8826	.8917	1.0775	1.9149	.9940		
KRAW:	0367	0004	1.0000	.5193	.0004	1.0000		
PKBG:	.21	.95	78.18	41.17	1.31	28.85		

The rhenium standard displays an apparent rhenium concentration of 103% and a zinc total of an additional 20%. The ZnSe is even more interesting in that the total is approaching 152% with 44% zinc, 56% rhenium and 51% selenium. The true composition is 45% zinc, and 55% selenium with no rhenium! The normal matrix correction comes close with respect to both zinc and selenium abundances but also reports a whopping 56% rhenium concentration.

Below, both standards are rerun with the interference corrections applied.

St575 Set1 rhenium metalTakeOff = 40.0KiloVolt = 20.0Beam Current = 20.0Beam Size = 0(Magnification (analytical) =2000),Beam Mode = AnalogSpot(Magnification (default) =0, Magnification (imaging) =40)Image Shift (X,Y):-2,3Number of Data Lines:5Number of 'Good' Data Lines:5First/Last Date-Time:06/15/199801:40:14PM to06/15/199801:48:18PMWARNING-Forcing negative k-ratios to zero20002000200020002000										
Average	Total ()xygen:		.000	Average	Total We	eight%:	100.138		
Average	Calcula	ated Oxyg	gen:	.000	Average	Atomic 1	Number:	74.736		
Average	Excess	0xygen:		.000	Average	Atomic N	Weight:	184.273		
Average	ZAF Ite	eration:	-	2.00	Average	Quant I	terate:	13.80		
St 575	Set 1	l rheniur	n metal,	Results	in Eleme	ental We	ight Pero	cents		
ELEM:	Cs	Fe	Zn	Re	S	Se				
BGDS:	LIN	LIN	LIN	LIN	LIN	LIN				
TIME:	10.00	10.00	10.00	10.00	10.00	10.00				
BEAM:	.20	.20	.20	.20	.20	.20				
ELEM:	Cs	Fe	Zn	Re	S	Se	SUM			
1	.000	.000	.375	99.332	.023	.000	99.730			
2	.164	.005	.000	99.625	.007	.000	99.801			
3	.000	.000	1.096	98.532	.000	.168	99.796			
4	.000	.023	.847	99.364	.000	.149	100.383			
5	.000	.000	.000	100.776	.000	.203	100.979			
AVER:	.033	.006	463	99.526	.006	104	100.138			
SDEV:	.074	.010	. 496	.810	.010	.097	.539			
SERR:	.033	.004	. 222	.362	.004	.043				
%RSD:	223.61	177.20	107.02	.81	164.63	93.19				
PUBL:	n.a.	n.a.	n.a.	100.000	n.a.	n.a.	100.000			
%VAR:	.00	.00	.00	47	.00	.00				
DIFF:	.000	.000	.000	474	.000	.000				
STDS:	834	730	660	575	730	660				
STKF:	5978	4297	5001	1.0000	4719	5162				
STCT:	628.01	3665.44	3726.73	3679.31	4367.49	1316.18				
IINKE:	0003	0001	0055	9942	0000	0012				
UNCT:	- 02	-1 11	10 26	3657 79	- 43	1 76				
UNBG:	11.57	41.92	95.49	93.54	8.43	93.41				
	1 0000	0.600	0.4.6.6	1 0011	0 0000	0.000				
ZCOR:	1.2302	.8692	.8409	1.0011	2.3003	.8800				
KRAW:	.0000	0003	.0028	.9942	0001	.0013				
FKBG• TNTP§•	1.00	.97	1.11 -00 F7	4U.14	.95	1.02				
TINT Q •			-22.5/	59	-2.00					

St 660 TakeOff (Magnifi Image Sh Number of First/La WARNING-	Set 1 = 40.0 ication ication hift (X, of Data ast Date - Forcir	I ZnSe (s KiloVol (analyti (default (Y): Lines: e-Time: (ng negati	synthetic lt = 20.(ical) = ;) = 5 06/15/199 ive k-rat	2) Beam (2000), 0, Ma 0, Ma 28 01:50 2105 to 2	Current = F agnificat Number of :41 PM to zero	= 20.0 1 Beam Mode zion (ima E 'Good' D 06/15/3	Beam Siz e = Anal aging) = - Data Li 1998 01:	e = 0 og Spot 40) 2, 3 nes: 5 58:46 PM
Average	Total ()xygen:		.000	Average	Total We	eight%:	100.261
Average	Calcula	ated Oxyg	gen:	.000	Average	Atomic 1	Number:	32.316
Average	Excess	Oxygen:		.000	Average	Atomic N	Weight:	72.276
Average	ZAF Ite	eration:	2	3.00	Average	Quant I	terate:	15.00
St 660	Set 1	L ZnSe (s	synthetic	c), Resul	lts in El	lemental	Weight	Percents
ELEM:	Cs	Fe	Zn	Re	S	Se		
BGDS:	LIN	LIN	LIN	LIN	LIN	LIN		
TIME:	10.00	10.00	10.00	10.00	10.00	10.00		
BEAM:	.20	.20	.20	.20	.20	.20		
ELEM:	Cs	Fe	Zn	Re	S	Se	SUM	
б	.000	.000	45.121	.000	.017	54.799	99.937	
7	.000	.014	44.451	1.080	.032	54.981	100.558	
8	.000	.000	45.153	.477	.032	54.459	100.120	
9	.000	.015	45.415	.000	.033	54.368	99.831	
10	.000	.000	46.003	.000	.047	54.807	100.857	
AVED •	000	006	45 220	211	022	E1 600	100 261	
AVER ·	.000	.000	43.229	.311	.032	259	100.201	
SDEV.	.000	.008	.500	.4//	.011	.250	.434	
SERK.	.000	137 06	1 24	153 10	33 46	.110		
81(0)	.05	137.00	1.21	133.10	55.10	• 1 /		
PUBL:	n.a.	n.a.	45.290	n.a.	n.a.	54.710	100.000	
%VAR:	.00	.00	14	.00	.00	05		
DIFF:	.000	.000	061	.000	.000	027		
STDS:	834	730	660	575	730	660		
STKF:	5978	4297	5001	1.0000	4719	5162		
STCT:	628.01	3665.44	3726.64	3678.98	4367.49	1316.18		
UNKF:	.0000	.0001	.4995	.0028	.0002	.5162		
UNCT:	-23.07	-1.38	3721.55	2.34	1.72	1316.18		
UNBG:	29.32	22.96	48.34	47.66	5.61	47.46		
ZCOR:	1 0803	8842	9055	1 1054	1 7220	1 0593		
KDVM.	- 0367	_ 00042	9095	0004	1.1229	1 0000		
DKBC:	.0307	95.0004	78 08	1 05	1 21	28 85		
INT%:			- 14	-99.88	±.JI	20.05		
			•					

Now, the apparent zinc in the rhenium metal standard is gone and the average total sums correctly near 100%. The ZnSe standard is perfect, matching the published standard composition for both zinc and selenium, and effectively removing all of the apparent 56% rhenium.

Light Element Analysis - Empirical APFs

Quantitative analysis of light elements (beryllium to fluorine) is difficult to do correctly with the electron microprobe. Numerous issues impede the analysis of light elements (see Appendix B in the User's Guide and Reference documentation as well as Goldstein et al., 1992 for further discussion). A few brief comments will be made here, as an introduction to this section.

Typically, for x-ray analysis in this energy range (0.1 to 0.7 keV), a large absorption correction is necessary. This large correction in conjunction with the fact that the mass absorption coefficients for the low energy x-rays are very large and not very well known (see Appendix C of the User's Guide and Reference documentation) place a severe demand on the established ZAF and Phi-Rho-Z models for light element matrix corrections. Some reduction in this large x-ray absorption factor is possible by analyzing at higher take-off angles and at lower acceleration voltages. The former aids by shortening the path length for absorption in the sample while the latter involves a decrease in the electron beam penetration so that x-rays are generated closer to the surface and can escape to be detected.

Low count rates for these light elements are often found. This is due to the low fluorescent yields from the K α x-ray lines and the inefficient nature of WDS counting systems. Count rates can be increased by increasing the beam current substantially but this may then lead to deadtime problems for metal lines that interfere with the light element lines of interest. The use of new layered dispersive element (LDE) synthetic multi-layer crystals with large d-spacings can also improve light element peak count rates.

There is also a strong possibility of interferences from higher order metal lines such as titanium, chromium, manganese, iron, nickel, zirconium, niobium, and molybdenum with the light element lines. These interferences are often severe for minor and trace level measurements. It is critical to eliminate peak overlaps and understand the background intensity around the light element peak position in both the sample and standard. The new LDE multi-layer crystals also help here by strongly suppressing these higher order reflections.

Finally, chemical bonding effects can result in wavelength shifts, increases or decreases in the relative intensities of various lines and alteration of the shape of the analytical line. These effects are most significant for the lightest (lowest energy) elements. Polarization phenomena and crystallographic orientation may also cause variations in peak shape and intensity especially for boron. Therefore, to measure the intensity of the light elements, one measures the integral intensity (area) under the characteristic peak rather than just the peak intensity.

Bastin and Heijliers (1984, 1991) pioneered the area-peak factor (APF) analysis method. The APF is defined as the ratio between the integral intensity (area) k-ratio from the sample and the standard and the peak intensity k-ratio from the same sample and the standard. This factor is only valid for a given compound with respect to a given standard and a specific spectrometer setup. These integral measurements can be made by scanning the spectrometer in small steps across the characteristic peak with the wavescan feature in PROBE FOR EPMA. After acquiring the peak shape profiles for a primary standard and a number of secondary standards and correcting for the background and removal of interfering peaks, the APF can be calculated as:

$$APF = \frac{I_{U}^{I} \cdot I_{S}^{P}}{I_{U}^{P} \cdot I_{S}^{I}}$$

Where :	I_{U}^{I}	is the integrated intensity of the secondary standard
	I_{S}^{P}	is the peak intensity of the primary standard
	I_{U}^{P}	is the peak intensity of the secondary standard
	I_s^{I}	is the integrated intensity of the primary standard

After an APF has been determined, future measurements of that compound can be accomplished by measuring only the peak intensity in the sample and standard. Then, multiplication of the peak k-ratio with the appropriate APF will yield the correct integral k-ratio.

PROBE FOR EPMA allows the user to select an APF correction for use in correcting x-ray intensities for peak shift and shape changes between the standard and the multi-element unknown. This is critical when the user is analyzing the K α lines of the light elements (boron, carbon, nitrogen and oxygen). This correction may also be of use for other elements such as S K α that also exhibits peak shift and shape changes when comparing sulfate and sulfide peaks.

The power of this correction will be documented in the analysis of oxygen using several simple oxide standards. Open a new PROBE FOR EPMA run. Here oxygen K α will be analyzed using MgO as the calibration standard. The spectrometer is equipped with a standard P-10 gas flow counter and a LDE (59.8Å) W/Si reflecting crystal. The other two elements to be determined are magnesium on MgO and silicon on SiO₂. Peak the three elements and acquire standard samples for each.

Create a new unknown sample and collect data on the SiO_2 standard. Analyze the sample from the **Analyze!** window.

Analyze!											_ _ ×
-Sample Li	st (multi-sele	ct) (double-cl	lick to see int	ensity data) –		Ar	nalyze	Data	KRaws	Combine Analysis	
🔿 Standa	rdis Un	1 * setup				Combi	ne Selecteo	Samples	>>Excel	Lines From Selecte	d
Unknow	vns Un	2 SiO2 std cl	heck			List B	enort	Calculation	Ontions	Samples	
O Waves	cans					LISTIC	opon	odiculation	opuono		
C All Sam	ples					Pau:	se Betweer All Matrix (Samples Corrections	Report	Combine Data Line	s
Select						D I .	<u> </u>			From Selected	
Add To S	etup					Undelet	Selected Selected	Sample(s) Sample(s)	Match	Samples	
Save Set	tups					Combin	ed Conditio	ons Cou	ınt Times	Sort Stat and Data	1
Specified (Concentratio	ns <mark>Standa</mark>	rd Assignmer	nts Name/E	Descrip	tion C	Conditions	Element	s/Cations	Grids In Geologica or Atomic Number	al r
Un 2 SiO2 TO = 40, Ke	std check eV = 15, Bea	m = 30, Size	= 2	.000 T .000 C	otal Ox alculat	ygen ed Oxyge	97.989 n 10.878	Total W Z - Bar	eight %		
(MaqAnal = Results in E	2000.), Mode lemental We	e = Analoq Sj ight Percent	pot	.000 E	xcess	Oxygen	20.161	Atomic V	Veight		
Сору	Si	Mg	0	Total							
Average:	46.997	.005	50.987	97.989							
Std Dev:	.311	.009	.302	.533							
ZAF Corr:	1.1318	1.3928	2.0346								
Std Err:	.179	.005	.174	.308							
%Rel SD:	.66	173.20	.59	.54							
Minimum:	46.715	.000	50.663	97.378							
Maximum:	47.330	.016	51.261	98.365							
•											•
Delet	e Selected L	ine(s)	Undele	ete Selected L	.ine(s)		Analyze	Selected Li	ne(s)		
Сору	Si	Mg	0	Total							
21 G	46.715	.000	50.663	97.378							
22 G	46.946	.016	51.261	98.223							
23 G	47.330	.000	51.035	98.365							
											-
										Cancel Ne	ext /

A low total for the analysis is found. The nominal composition for the SiO_2 standard is silicon: 46.74 and oxygen: 53.26. Here, the discrepancy in the total rests primarily with the oxygen concentration. The low oxygen concentration is independent of the matrix correction (and mass absorption coefficient) and can only be corrected for by using the appropriate APFs. Select **Analytical** | **Analysis Options** from the main PROBE FOR EPMA log window to open the **Analysis Calculation Options** window. Click the *Use Empirical APF Values* check box to activate this option.

Quantitative Acquisition Options Image: Use Deadtime Correction Image: Use Normal Deadtime Correction (single term factorial) Image: Use Precision Deadtime Correction (two term factorial for > 50K cps)	OK
Use Beam Drift Correction Use Automatic Drift Correction on Standard Intensities	Calculation Options Use Aggregate Intensities for Duplicate Quantitative Elements Use Blank Calibration Sample Trace Element Accuracy Corrections Force Negative K-Ratios To Zero in ZAF Calculations
Use Assigned Interference Corrections on Standards and Unknowns Do Not Use Matrix Correction Term For Full Quant Interference Correction Do Not Use Full Quant Interference Corrections (use traditional Gilfrich, et. al.) Use Assigned or Self Time Dependent Intensity (TDI) Corrections on Unknowns Use Linear Fit (slope coefficient only) for TDI Extrapolation Use Quadratic Fit (two coefficient) for TDI Extrapolation Use Come Weighted Data for TDI Fit (weight intensities based on elasped time) Time Weighted Data Weight Factor Use Absorption Corrected MAN Continuum Intensities Use Particle or Thin Film Correction Parameters	Calculate Electron and Xray Ranges for Sample Compositions Use Oxygen From Halogens (F, Cl, Br and I) Correction Use Nth Point Calculation For Off-Peak Intensities (for testing only) Use Count Overwrite Intensity Table for Data Calculations Force Negative Interference Intensities To Zero in Corrections Use Chemical Age Calculation (U, Th, Pb) Formatting Options Use Automatic Format For Quantitative Results
Check For Same Peak Positions in Unknown and Standard Check For Same PHA Settings in Unknown and Standard Use Zero Point For Calibration Curve (off-peak elements only) Use Conductive Coating Correction For Beam Energy Loss Use Conductive Coating Correction For X-ray Absorption	 Display the Maximum Number of Numerical Digits Display Only Statistically Significant Number of Numerical Digits Use Detailed Printout For Data and Analytical Results Print Analyzed And Specified On Same Line Display Count Intensities Unnormalized To Time (in Analyze!)
 MAC (mass absorption coefficient) and APF (area peak factor) Options □ Use Empirical MAC Values ☑ Use Empirical APF Values ④ Use Empirical APF Factors (calculated from elemental composition) ○ Use Specified APF Factors (based on a fixed composition) 	Output Options Display Charge Balance Calculation Elemental Output Sort Order For JJD-2 and HW Custom Output: Use Traditional Geological Sort Order (SiO2, TiO2, etc.) Use Low To High Atomic Number Sort Order Use High To Low Atomic Number Sort Order

Click the **OK** button.

Next, select **Analytical** | **Empirical APFs** from the main PROBE FOR EPMA log window to open the **Add Empirical APFs** (area peak factors) to **Run** window.

Find the appropriate correction. Two choices are given for oxygen in the presence of SiO_2 , Bastin's value of 1.04440 using Fe_2O_3 as the calibration standard and Donovan's correction factor of 1.070 when using MgO as the calibration standard. Although the values seen in the text field below are relative to Fe_2O_3 , the APF for MgO relative to Fe_2O_3 is also 1.000, which means that these correction factors apply equally well relative to MgO. Hence, the use of MgO as the calibration standard.

The APF correction values are defined in the EMPAPF.DAT file in the PROBE FOR EPMA directory. The file contains some 80 values that may or may not be applicable, depending on the analyzing crystals and standards available. It is strongly recommended that the user measure the integral intensities and peak intensities and calculate the APFs for your particular spectrometer setup. And if necessary, edit the EMPAPR.DAT file using any ASCII text editor such as NotePad to insert their own measurements. See the User's Guide and Reference documentation for editing format and details.

Click the **Add To Run** >> button to place the selected empirical APF into the run.

Click the **OK** button.

Re-analyze the unknown SiO_2 sample. The total is now closer to 100% and a more reasonable oxygen concentration is calculated.

📕 Analyze!										<u> </u>	
Sample List (multi-select) (double-click to see intensity data)						Analyze Data KRaws Comb			Combine Analys	is	
🔿 Standa	O Standards Un 1 * setup					bine Selected	Samples	>>Excel	Lines From Selec	ted	
O Unknow	wns Un	2 SiO2 std ch	ieck		Lis	t Benort (Calculation	Ontions	Samples		
O Waves	cans							opaons			
O All San	nples				□ P □ U	ause Between se All Matrix Co	Samples orrections	Report	Combine Data Lines		
Add To S	All Setup				Del	Delete Selected Sample(s) Match Samples					
Save Se	tups				Com	hined Condition	ns Cou	unt Times			
									Sort Stat and Da	ta ral	
Specified	Concentratio	ns <mark>Standar</mark>	d Assignmen	ts Name/Des	cription	Conditions	Element	s/Cations	or Atomic Numb	er	
Un 2 SiO2 std check .000 Total Oxygen 99.669 Total Weight % TO = 40, KeV = 15, Beam = 30, Size = 2 .000 Calculated Oxygen 10.834 Z - Bar (MaqAnal = 2000.), Mode = Analog Spot .000 Excess Oxygen 20.082 Atomic Weight											
Conv	Si	Ma	0	Total							
Average:	47.078	.005	52.586	99.669							
Std Dev:	.311	.009	.308	.543							
ZAF Corr:	1.1337	1.3980	2.0170								
Std Err:	.180	.005	.178	.313							
%Rel SD:	.66	173.20	.59	.54							
Minimum:	46.796	.000	52.253	99.048							
Maximum:	47.412	.016	52.859	100.057							
•										Þ	
		1									
Delet	te Selected L	ine(s)	Undele	te Selected Line	!(s)	Analyze S	Selected Li	ne(s)			
Сору	Si	Mg	0	Total							
21 G	46.796	.000	52.253	99.048							
22 G	47.026	.016	52.859	99.901							
23 G	47.412	.000	52.645	100.057							
•											
									Cancel	lext //	

The APF values selected or entered are always measured relative to some standard sample. For example, if measuring oxygen K α and using either MgO or Fe₂O₃ as the primary standard for oxygen, then any oxygen K α APF values used must be those measured relative to either MgO or Fe₂O₃. For the same reason, if using APF values for a particular light element and the user decides to re-assign the standard for that element, the APF values for that element must also be re-normalized to reflect the standard re-assignment.

Thus, it is most efficient to always use the same standard for each light element analyzed. Typically (in order to utilize the APF values in the supplied EMPAPF.DAT file) these will be:

- Oxygen : MgO or Fe₂O₃
- Nitrogen : AlN
- Carbon : Fe₃C
- Boron : B metal

The APF correction in PROBE FOR EPMA will allow the user to enter empirical APF values in each run. The user may enter one or more APF factors for each emitting element although they are generally applied to soft x-ray lines. The APF for each absorber will be summed according to it's weight fraction in the composition and applied to the emitting element counts during the ZAF or Phi-Rho-Z iteration.

(This page intentionally left blank)

References

- Bastin G.F., and Heijliers H.J.M., (1984) Quantitative Electron-Probe Microanalysis of Carbon in Binary Carbides., *Microbeam Analysis* (Editors: A.D. Romig, Jr. and J.I. Goldstein) pp 291-294.
- Bastin G.F., and Heijliers H.J.M., (1991) Quantitative Electron-Probe Microanalysis of Ultra-Light Elements (Boron-Oxygen)., *Electron Probe Quantitation* (Editors: K.F.J. Heinrich and D.E. Newbury), New York: Plenum Press pp 145-161.
- Deer W.A., Howie R.A., and Zussman J., (1992) An introduction to The Rock-Forming Minerals, Second Edition, New York: Wiley.
- Donovan J.J., Snyder D.A., and Rivers M.L., (1993) An Improved Interference Correction for Trace ElementAnalysis. Microbeam Analysis **2** 23-28.
- Goldstein J.I., Newbury D.E., Echlin P., Joy D.C., Romig A.D. Jr, Lyman C.E., Fiori C., and Lifshin E., (1992) *Scanning Electron Microscopy and X-Ray Microanalysis, Second Edition*, New York: Plenum.
- Nielsen C.H., and Sigurdsson H., (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am. Mineral., **66** 547-552.
- Reed S.J.B., (1993) Electron-Microprobe Analysis, Second Edition, New York: Wiley.
- Scott V.D., Love G., and Reed S.J.B. (1995) *Quantitative Electron-Probe Microanalysis, Second Edition*, London: Ellis Horwood.
- Willis J.P., (1993) Course on Theory and Practice of XRF Spectrometry, University of Western Ontario, Department of Geology, Course Notes.