XM-17460

THIN FILM ANALYSIS PROGRAM
XM-17460

THIN FILM ANALYSIS PROGRAM
NOTICE

• This instrument must not be modified, and products other than those manufactured by JEOL Ltd. must not be attached to this instrument, without prior written permission. If any such modification or attachment is made, all the stipulated warranties and services contracted by JEOL Ltd. or its affiliated company will be void.

• Replacement parts for maintenance of the instrument performance are available for seven years from the date of installation. Thereafter, some of those parts may be available for a certain period of time, and in this case, an extra service charge may be applied for servicing with those parts. Please contact your JEOL service office for detail.

• The information in this manual, which is based on specifications believed correct at the time of publication, is subject to change without notice due to improvements made in the instrument.

• In order to assist us in preparing future documentation, please advise your nearest JEOL service office if you find any errors in this manual. Kindly note that while the instrument can be used in combination with various attachments to serve a number of purposes, this special feature of the instrument is only briefly described in this manual, which chiefly provides information on basic operations.

• In no event will JEOL Ltd. be liable for direct, indirect, incidental or consequential damages resulting from the use of software described in this manual.

• This manual is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from JEOL Ltd.

• When this manual or the software described in this manual is furnished under a license agreement, it may only be used or copied in accordance with the terms of such license agreement.

Copyright ©2002 JEOL Ltd.

MANUFACTURER

JEOL Ltd.
1-2 Musashino 3-chome Akishima Tokyo 196-8558 Japan
Telephone: 81-42-528-3353
Facsimile: 81-42-528-3385

Note: For servicing or inquires, please contact your JEOL service office.
1 GENERAL

This thin film analysis program is option software for the quantitative analysis programs described in the separate “BASIC SOFTWARE 1” instruction manual. It is intended for thin film analysis using the Philibert & Tixier method* and also the Reuter method**. In actual analysis, this program is used in combination with the quantitative analysis program.

The following correction methods are used with this program.

- **Philibert & Tixier method**

 This is a method of performing quantitative analysis of thin films using a bulk standard specimen. It enables the mass/concentration ratio of all elements in a thin film to be obtained when the thin film alone is maintained in a vacuum (the final results are normalized to 100%).

 This method requires that the film be sufficiently thin.

- **Reuter method**

 This method is used in combination with the Philibert & Tixier method when the thin film is on a substrate and the substrate contains none of the elements that are in the film. In this method, an X-ray intensity correction term is added to take account of excitation by the backscattered electrons from the substrate.

 This method requires that the substrate does not contain any of the elements that are in the film.

2 CORRECTION METHOD

2.1 Philibert & Tixier Method

The specimen is a thin film without a substrate that is maintained in a vacuum.

![Thin film maintained in a vacuum. ρ is the density, and ΔZ is the film thickness.]

Assuming that the standard specimen is a bulk sample which consists of a pure element i, the intensity of the X-rays is determined according to the following equation.

\[I_{i}^{100} = \frac{W_{i} \cdot N_{i} \cdot R_{i}}{A_{i} \cdot F_{i}^{(i)}} \text{ (i = 1 - n)} \]

(1)

On the other hand, if the thickness of the thin film is assumed to be ΔZ cm, the intensity of the X-rays emitted from the thin film for element i is determined according to the following equation.

\[I_{i}^{T} = C_{i} \cdot \frac{W_{i} \cdot N_{i} \cdot \Psi_{i} \cdot \rho \Delta Z}{A_{i}} \]

(2)

where

\[W_{i} \]: Fluorescence absorption rate of element i
\[N_{i} \]: Avogadro’s number
\[A_{i} \]: Atomic weight of element i
\[F_{i} \]: 1/(\int_{E_{o}}^{\infty} \frac{\psi_{i}}{S_{i}} dE)
\[\rho \]: Density
\[\Psi_{i} \]: Ionization cross-sectional area
\[E_{o} \]: Electron beam accelerating voltage
\[R_{i} \]: Back scattering coefficient of element i
\[S_{i} \]: Stopping power of element i

Assuming that the film is sufficiently thin, the X-ray absorption by the film can be ignored. Consequently, if only the absorption of the bulk standard specimen is taken into account, the ratio of the X-ray intensity for element i between a standard specimen and a thin film is obtained using equations (1) and (2), as follows:

\[K_{i} = \frac{I_{i}^{100}}{I_{i}^{T}} = C_{i} \cdot \frac{\Psi_{i} \cdot F_{i}^{(i)}}{R_{i}} \cdot \frac{\rho \Delta Z}{f(x)} \]

(3)

If, now, \(K_{j} \) is calculated for element j, the ratio of the X-ray intensities is determined according to the following equation.

\[\frac{K_{i}}{K_{j}} = C_{i} \cdot \frac{\Psi_{i} \cdot \rho \frac{F_{j}^{(i)}}{R_{j}} \cdot \frac{1}{f(x)}}{C_{j} \cdot \Psi_{j} \cdot \frac{F_{j}^{(i)}}{R_{j}} \cdot \frac{1}{f(x)}} \]

(4)
Thus $\rho \Delta Z$ can be eliminated. In other words, the resulting equation does not depend upon the thickness of the film. Next, re-arrange equation (4) as follows:

$$\frac{C_i}{C_j} = \frac{K_i}{K_j} \cdot \left(\frac{1}{\psi_i} \cdot (R_i / F_i) \cdot f(\chi)_i \right) \left(\frac{1}{\psi_j} \cdot (R_j / F_j) \cdot f(\chi)_j \right)$$

(5)

Here,

$$\psi_i \times E_{i0}^2 = 7.92 \times 10^{-14} / \epsilon nU_0(i) / U_0(i)$$

where

$$U_0(i) = E_0 / E_{i0}$$

Therefore,

$$G_i = (E_{i0} / \epsilon nU_0(i)) \cdot (R_i / F_i) \cdot f(\chi)_i$$

Consequently, equation (5) can be re-written as follows.

$$\frac{C_i}{C_j} = \frac{K_i}{K_j} \cdot \frac{G_i}{G_j}$$

(6)

Here,

$$C_1 + C_2 + \cdots + C_n = 1$$

Therefore,

$$\frac{C_i}{C_j} + \frac{C_i}{C_j} + \cdots + \frac{C_i}{C_j} + 1 = \frac{1}{C_i}$$

$$\therefore C_j = \frac{1}{\sum(C_i / C_j)}$$

$$\therefore C_i = \frac{K_i}{K_j} \cdot \frac{G_i}{G_j} C_j$$

Consequently, the concentration of all elements in the thin film can be obtained.
2.2 Reuter Method

This method assumes that none of the elements in the thin film are contained in the substrate.

Reuter assumed in 1972 that the X-ray intensity for element \(i \) contained in the thin film is intensified by a factor of \(R_0 \) by the backscattered electrons from the substrate compared to the case where the film is maintained in a vacuum. \(R_0 \) is calculated using the following equation.

\[
R_0 = 1 + 2.8(1 - \frac{0.9}{U_0(i)})
\]

where \(\eta \) is the reflection coefficient of the substrate for the electron beam. It is determined using the following equation.

\[
\eta = -0.0254 + 0.016Z - 0.000186Z^2 + 8.3 \times 10^{-7}Z^3
\]

In the case of a compound,

\[
\eta = \sum C_i \eta_i
\]

In other words, if the specimen is on a substrate, equation (2) can be re-written as shown below.

\[
I_i^{f} = C_i \cdot \frac{W_i \times N_o}{A} \cdot \frac{\rho \Delta Z \cdot R_{ci}}{f(x)_i} \]

In other words, equation (3) can be re-written as follows.

\[
K_i = C_i \cdot \frac{\psi_i \times F_i}{R_i} \cdot \frac{\rho \Delta Z \cdot 1}{f(x)_i} \cdot R_{ci}
\]

Equation (4) can be re-written as follows.

\[
\frac{K_i}{K_j} = \frac{C_i}{C_j} \cdot \frac{\psi_i \cdot (F_i / R_i) \cdot (1 / f(x)_i)}{\psi_j \cdot (F_j / R_j) \cdot (1 / f(x)_j)} \cdot \frac{1}{R_{ci}}
\]

Also, the following relationship holds.

\[
\frac{C_i}{C_j} = \frac{K_i}{K_j} \cdot \frac{G_i}{G_j} \cdot \frac{1}{R_{ci}}
\]

Thus the concentration of all of the elements in the thin film can be obtained.
3 PROGRAM STRUCTURE

The thin film analysis program is contained in the Measurement directory under the Quantitative Analysis program.

Analysis

- Quantitative Analysis
- Sample
- Measurement
 - Correction Method (*)
 - Element Condition
 - EOS Condition
 - EDS Condition
 - Standard Condition
 - Substrate Composition (*)
 - Stage Condition
 - Condition Load
 - Condition Save
 - Print-out Condition
 - Measurement Mode
 - Survey Measurement
 - Preset Measurement

* Changed/added for thin film measurement.
4 OPERATION

The basic operation of this program is the same as that of the quantitative analysis program. The following operation sequence describes parts that differ from the quantitative analysis program and also parts that have been newly added for thin film analysis.

For a description of operation of the quantitative analysis program, refer to the separate “BASIC SOFTWARE 1” instruction manual.

4.1 Quantitative Analysis Menu Display

Click on the Analysis icon in the EPMA menu, then click on the item “Quantitative Analysis” in the sub-menu. The Quantitative Analysis window will appear. Next, click on the Measurement button in the window. The Measurement menu will appear. The items “Correction Method” and “Substrate Composition” have been added by the thin film analysis program.

Fig. 3 Quantitative analysis menu display
4.2 Correction Method Window

When performing thin film analysis, click on the item “Correction Method” in the Measurement menu to display the Correction Method window (refer to Fig. 4), then click on the Thin Film button of Correction Method in this window.

![Fig. 4 Correction method window]

4.3 Setting the Accelerating Voltage

When performing thin film analysis, the film must be sufficiently thin. In many cases, this assumption will not hold if the film thickness exceeds 1000 to 2000 nm. In such a case, if the accelerating voltage is increased, the X-ray emission area will increase, enabling the film to be considered relatively thin. Based on this fact, there is a method of thin film analysis in which the accelerating voltage is set higher than normal in order to provide better results.

4.4 Setting a Standard Specimen

In thin film analysis, a normal bulk standard specimen is used, so specify the standard specimen in the normal way.
4.5 Substrate Composition Window

By clicking on the item “Substrate Composition” in the Measurement menu, the Substrate Composition window (refer to Fig. 5) will appear, enabling a thin film on a substrate to be analyzed.

![Substrate Composition window](image)

Fig. 5 Substrate Composition window

Set the Substrate Composition window using the following procedure.

1. Enter the elements to be analyzed in the Element column of the table in the Substrate Composition window.
2. Enter the mass concentration (%) in the Mass % column.

If the thin film analysis is performed according to the above procedure, the contribution degree, R0, due to back scattering from the substrate will be calculated by the Reuter method, and the result displayed in the Listing Window (refer to Fig. 6). When analyzing a thin film without a substrate, there is no need to make an entry to the Substrate Composition window.
4.6 Executing Thin Film Correction

If each of the above settings is carried out and quantitative analysis performed, thin film correction will take place after measurement, and the results will be displayed in the Listing window (see Fig. 6).

The mass concentration is always 100% normalized.

The contents of the displayed items are as follows.

- **EK/In (U):** Term of the X-ray generation function for thin film in the Philibert & Tixier method.
- **R0:** Correction term related to the influence on the X-ray intensity due to backscattered electrons in the Reuter method.
- **ZAF:** (STD Factor) \cdot \frac{E K/In (U)}{R0}

By multiplying this value by the K-ratio, the mass concentration will be obtained.